

Name:

Date:

Student Exploration: Balancing Blocks

Vocabulary: area, balance, dimension, prism, product, rectangular prism, volume

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

Lucille works at the Acme Hat Factory. Each hat fits in a box that measures 1 foot on each side. Lucille's job is to put the hat boxes into a larger box that measures 2 feet long, 2 feet wide, and 2 feet tall.

- 1. How many hat boxes will cover the bottom of the larger box?
- 2. How many hat boxes will fit into the larger box, total? _____

Gizmo Warm-up

The *Balancing Blocks* Gizmo gives you the challenge of balancing a collection of blocks on the point of a cone. To get started, practice using the Gizmo.

- Change your viewpoint by clicking and dragging the blue mat that the cone sits on.
- Select **add blocks** at the bottom of the Gizmo and click the model to add blocks. Notice that the model tilts when you add blocks. When the blocks are in **balance**, the cone turns green.
- Select **delete blocks** and click the model to remove blocks.
- 1. Next to **GOAL**, click **Show**. Can you balance 12 blocks

on the 3 x 2 platform? _____ Click **Count blocks**

to check. Then sketch your blocks to the right.

2. Under **BASE**, use the \blacktriangle or \checkmark arrows to set the base **dimensions** (measurements) to 3×3 .

Can you balance 12 blocks now? _____ How? _____

Activity A:	Get the Gizmo ready:	
Volume of small prisms	 Under BLOCKS, click Clear. Set the BASE dimensions to 3 × 2. Next to GOAL, turn off Show. 	Xova

- 1. Look at the 3×2 base.
 - A. How many total squares do you see? _____ This number is the area of the base.
 - B. What does 3 x 2 equal? _____
 - C. What do you think is the area of a 5×4 base? _____ Check this in the Gizmo.
 - D. If you know the length and width of a rectangle, how do you find its area? _____
- Set the BASE dimensions back to 3 × 2. Under BLOCKS, click Stack to stack one layer of blocks. You have created a shape called a rectangular prism, like a box or a brick. A rectangular prism can be described by three dimensions: length (*I*), width (*w*), and height (*h*).
 - A. What are the dimensions of this rectangular prism? *I*: _____ *w*: _____ *h*: _____
 - B. The **volume** (*V*) of an object is equal to the number of unit blocks that can fit inside.

Count the blocks. What is the volume of this rectangular prism? _____ blocks

3. Set Stack to 2 layers. In the spaces below, list the dimensions and volume of the prism.

Length (*I*): _____ Width (*w*): _____ Height (*h*): _____ Volume (*V*): _____

4. What will the volume be if you stack 5 layers of blocks on the 3 x 2 base?

Use the Gizmo to check your answer.

5. Next to **GOAL**, turn on **Show** and check that **Difficulty 1** is selected. Solve three challenges by building and balancing rectangular prisms with the given volumes. Feel free to change the dimensions of the base. Click **New** for a new challenge.

Write the volumes and dimensions of each prism below.

Volume (<i>V</i>):	Length (<i>I</i>):	Width (<i>w</i>):	Height (<i>h</i>):
Volume (<i>V</i>):	Length (<i>I</i>):	Width (<i>w</i>):	Height (<i>h</i>):
Volume (<i>V</i>):	Length (<i>I</i>):	Width (<i>w</i>):	Height (<i>h</i>):

Activity B:	Get the Gizmo ready:	
Volume of large prisms	 Under BLOCKS, click Clear. Set the BASE dimensions to 4 × 5. Next to GOAL, turn off the Show checkbox. 	

- 1. Look at the 4 × 5 base. What is its area? ______ squares
- 2. Set **BLOCKS** to **2 Layers** to make a rectangular prism of blocks.
 - A. How many blocks do you have? _____ Click **Count** to check.
 - B. What is the **product** of the dimensions of the prism, 4 × 5 × 2? _____
- 3. Try different combinations of base dimensions and stacked layers. Record the volume of each rectangular prism. For the last two, choose your own dimensions.

Base	Height	Volume (blocks)
4 × 5	3	
4 × 5	4	
4 × 5	5	
2 × 4	1	
2 × 4	2	

Base	Height	Volume (blocks)
2 × 4	3	
2 × 4	4	
2 × 4	5	

- Look at your table. In general, how do you calculate the volume of a rectangular prism if you know its length, width, and height? ______
- 5. Calculate the volumes of the following rectangular prisms. Use the Gizmo to check answers.

 Length (I): 2
 Width (w): 3
 Height (h): 5
 Volume (V):

 Length (I): 5
 Width (w): 5
 Height (h): 3
 Volume (V):

6. Next to **GOAL**, turn on **Show** and check that **Difficulty 2** is selected. Solve three challenges by building and balancing rectangular prisms with the given volumes. Write down 3 goal volumes and your solutions.

Volume (<i>V</i>):	Length (<i>I</i>):	Width (<i>w</i>):	Height (<i>h</i>):
Volume (<i>V</i>):	Length (<i>I</i>):	Width (<i>w</i>):	Height (<i>h</i>):
Volume (<i>V</i>):	Length (<i>I</i>):	Width (<i>w</i>):	Height (<i>h</i>):

	Get the Gizmo ready:	
Activity C: Odd shapes	 Under BLOCKS, click Clear. Set the BASE dimensions to 3 × 2. 	
	 Next to GOAL, turn off the Show checkbox. 	HOO NI

 On the 3 x 2 base, try to create a balanced stack of 10 blocks that is no more than 2 layers high. On the diagrams at right, color in the blocks you placed on level 1 and level 2.

Level 1			L	evel	2	

- 2. On your computer, open a new document in a word-processing program. Add your name and a title, such as "Balanced Blocks."
- 3. Next to **GOAL**, turn on **Show**. Select **Difficulty 3**. Try at least three challenges. (Feel free to change the dimensions of the base.) When you build and balance each one, click the **camera** in the upper left corner. **Copy** the image and then choose **Paste** in your document.
- 4. Turn off **Show**. Find at least three different ways to balance 28 blocks. Take a snapshot of each, and paste each one in your document.
- 5. Try to make a balanced stack of 11 blocks on a 2 x 2 base. Can you do it? _____

Explain.

6. For each challenge below, circle "Possible" if it is possible to create a balanced stack, and "Impossible" if it isn't. If it is possible, paste a snapshot of your solution into your document.

A.	23 blocks on a 5 \times 2 base	Possible	Impossible
В.	16 blocks on a 3 × 3 base	Possible	Impossible
C.	19 blocks on a 1 \times 5 base	Possible	Impossible
D.	20 blocks on a 2 × 3 base	Possible	Impossible

- 7. Now make some general rules by stating which are possible and which are impossible.
 - A. An even number of blocks on a base with an even area:
 - B. An even number of blocks on a base with an odd area:
 - C. An odd number of blocks on a base with an even area:
 - D. An odd number of blocks on a base with an odd area: _____