Name: \qquad Date: \qquad

Student Exploration: Critter Count

Vocabulary: array, commutative property, factor, multiple, multiplication, product

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. Suppose you are at a very large party and need to know how many people are there. Why might counting the guests be difficult? \qquad
\qquad
2. You notice that the party guests are sitting six to a table. How would you figure out how many guests there are? \qquad

Gizmo Warm-up

When you see a multiplication expression, like 2×3, what does it mean? The Critter Count Gizmo shows what is actually happening when you multiply two numbers.

1. Check that the multiplication expression shown on the Gizmo is 2×3. If not, use the up and down arrows $(\stackrel{\stackrel{\rightharpoonup}{\dot{V}})}{ })$ to change the expression to 2×3.

How many leaves are there? \qquad How many ladybugs are on each leaf? \qquad
2. Change the first number in the expression (the 2) by clicking the up and down arrows. What changes? \qquad
\qquad
3. Change the second number in the expression (the 3) by clicking the up and down arrows. What changes? \qquad

Activity A:	Get the Gizmo ready:	
- Check that Show multiplication is selected. Counting party guests	- Set the expression to 7×6. - Check that Group is selected.	

The ladybugs are gathering for their annual picnic. They settle down on seven leaves, with six ladybugs on each leaf.

1. Numbers that are multiplied together are called factors.

What are the factors in the expression shown in the Gizmo? \qquad and \qquad
2. The result (answer) of multiplication is called the product. Click Count and watch.
A. What is the product of 7 and 6 ? \qquad
B. What does the product tell you about the ladybugs? \qquad
C. Based on what you see in the Count box, how does 7×6 relate to addition?
3. When you add 6 to itself many times, the numbers you get are multiples of 6 . For example, $6+6=12$, so 12 is a multiple of 6 . What are the first nine multiples of 6 ?

$$
\begin{array}{llll}
1 \times 6= & 2 \times 6= & 3 \times 6= & 4 \times 6= \\
6 \times 6= & 7 \times 6= & 8 \times 6= & 9 \times 6= \\
& 7 \times 6= &
\end{array}
$$

4. Write the multiplication problem and answer for each item below. The first has been done for you. Check your answers to B - D with the Gizmo. Use units on your answer if you can.
A. Five leaves, two butterflies on each leaf.
$5 \times 2=10$ butterflies
B. Six webs, three spiders on each web. \qquad
C. $3+3+3+3$
D. $8+8+8+8+8+8+8+8+8$

Challenge:
E. Sally sold 3 boxes of eggs. Each box holds 12 eggs. \qquad
F. At the ladybug picnic, there are 5 leaves. Each leaf has 4 ladybugs. Each ladybug eats 2 aphids.

Activity B: Crashing the party	Get the Gizmo ready: • Set the expression to 3×7. - Select Inchworms.	

Here come the inchworms! Hungry inchworms descend on the ladybugs' picnic. The inchworms scare away the ladybugs and eat up all the leaves.

1. Select Array and watch the leaves disappear. (The inchworms ate them all!) The inchworms are now shown in a rectangular display called an array. This is another way to model 3×7.
A. How many horizontal rows are in the array? \qquad
B. How many vertical columns are in the array? \qquad
C. How does the array model relate to the "group" model with the critters on leaves?

Rows are \qquad Columns are \qquad
D. Click Count. What is the product of 3 and 7 ? \qquad
2. Now change the expression to 7×3.
A. How many horizontal rows are in this array? \qquad
B. How many vertical columns are in this array? \qquad
C. Click Count. What is the product of 7 and 3 ? \qquad
3. The commutative property says that the order of numbers doesn't matter - the answer will be the same. Use the Gizmo to test the commutative property for multiplying. (For example, compare 6×4 and 4×6.)
A. What numbers did you test? \qquad
B. What did you find? \qquad
C. Does the commutative property seem to work for multiplying? \qquad
4. Challenge: Explain why the commutative property works for multiplication. (Hint: Arrays are rectangular. Think about the size of a 3 -by- 7 rectangle compared to a 7 -by- 3 rectangle.)
\qquad
\qquad
\qquad

