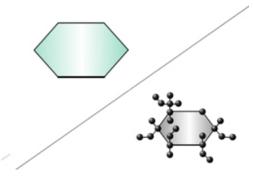
Name:	Date:	

Student Exploration: Dehydration Synthesis

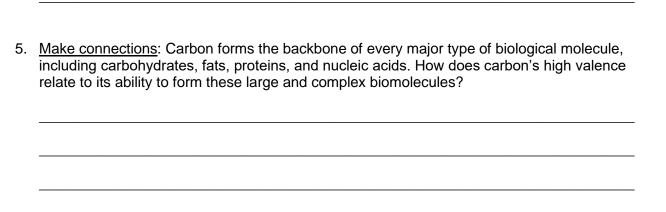

Vocabulary: carbohydrate, chemical formula, dehydration synthesis, disaccharide, glucose, hydrolysis, monosaccharide, oligosaccharide, valence

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1.	If you exercise on a hot day, you need to worry about dehydration. In this context, what do	
	you think <i>dehydration</i> means?	
2.	Astronauts and backpackers often bring dehydrated food. What do you think dehydrated	
	food in O	

Gizmo Warm-up

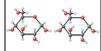
What do rice, potatoes, and sugar have in common? They are all foods rich in **carbohydrates**. Carbohydrates are an important energy source for your body. The basic building block of most carbohydrate compounds is the molecule **glucose**. Using the *Dehydration Synthesis* Gizmo, you will learn about the structure of a glucose molecule and how glucose molecules can be joined together to make larger carbohydrate molecules.



To begin, select the CREATE GLUCOSE tab.

- Look at the **chemical formula** for glucose. How many carbon (C), hydrogen (H), and oxygen (O) atoms are found in a molecule of glucose? C:______ H:_____ O:______
- 2. Turn on **Show chemical structure**. Each black sphere represents a carbon, hydrogen, or oxygen atom. The lines connecting the spheres represent chemical bonds.
 - A. How many black spheres are in the diagram? _____
 - B. How does this relate to the number of carbon, hydrogen, and oxygen atoms in the chemical formula for glucose?

Activity A:	Get the Gizmo ready:	000000
Build a glucose molecule	 Be sure the CREATE GLUCOSE tab is still selected. 	0000000000000
	ement tends to form a certain number of chemical bon nent. For example, a carbon atom has a valence of fo	
Goal: Construct a mo	lecule of glucose.	
	ure of a water molecule (H_2O) can be written as H-O-I mical bond. Count the number of bonds the oxygen all ecule.	
A. What is the	valence of oxygen?	
B. What is the	valence of hydrogen?	
glucose molecule o	the carbon, oxygen, and hydrogen atoms from the Anon the empty hexagon in the building region. Use the guide, and pay attention to the valence of each atom	chemical structure in
	n have correctly constructed the glucose molecule, clic e to modify your molecule until it is correct.	ck Check . If
Tools tab and click	ongratulations, you have completed a molecule of glues. Screen shot to take a snapshot of your completed news, and then paste the image into a blank document.	nolecule. Right click
4. Explain: How did th	ne valence of each element help you determine the str	ructure of the
glucose molecule?		



Activity B: Dehydration synthesis

Get the Gizmo ready:

• Select the DEHYDRATION tab.

Question: What occurs when two glucose molecules bond?

1.	<u>Infer</u> : Glucose is an example of a monosaccharide , the simplest type of carbohydrate. A disaccharide is made from bonding two monosaccharides together.
	What do you think the prefixes mono- and di- mean? Mono-: Di-:
2.	<u>Predict</u> : Turn on Show description . Drag both glucose molecules into the building region. Observe the highlighted region. What do you think will happen to the atoms in this region when the glucose molecules bond?
3.	Run Gizmo: Click Continue and watch the animation.
	A. What happened?
	B. What was removed from the glucose molecules when they bonded to form maltose?
4.	Infer: Based on what you have seen, create a balanced equation for the dehydration synthesis reaction. (Recall that the formula for glucose is $C_6H_{12}O_6$.) You will have to determine the formula of maltose yourself.
	Turn on Show current formula/equation to check your answer.
5.	Summarize: Use what you have observed to explain what occurs during a dehydration
	synthesis reaction.
6.	Apply: A <i>trisaccharide</i> is a carbohydrate made of three monosaccharides. What do you think would be the chemical formula of a trisaccharide made of three bonded glucose molecules?

	Get the Gizmo ready:)
Activity C:	Select the Hydrolysis tab.	
Hydrolysis	 Turn on Show description and Show current formula/equation. 	

Introduction: Carbohydrates made up of three to ten bonded monosaccharides are known as **oligosaccharides**. In a reaction known as **hydrolysis**, your body breaks down oligosaccharides into individual monosaccharides that can be used by your cells for energy.

Question: How do oligosaccharides break up into monosaccharides?

1.	Predic	Examine the oligosaccharide in the building region and its chemical formula.
	A.	How many monosaccharides can form if this oligosaccharide breaks up?
	B.	Recall the formula of glucose is C ₆ H ₁₂ O ₆ . How many carbon, oxygen, and hydrogen
		atoms will you need for three glucose molecules?
		atoms will you need for three glacose molecules:
	_	
	C.	What must be added to the oligosaccharide in the Gizmo to get three glucose
		molecules?
2.	Obser	vo: Turn off Show ourrant formula/agustion . Drag a water malegula into the building
۷.		ve: Turn off Show current formula/equation . Drag a water molecule into the building
	region.	Click Continue. What happened?
3.	Infor: (Create a balanced equation for the hydrolysis reaction that just occurred.
J.	iiiiei.	breate a balanced equation for the hydrolysis reaction that just occurred.
	Turn o	n Show current formula/equation to check your answer.
4.	Observ	ve: Turn off Show current formula/equation . Drag the second water molecule into
••		
	uie bui	Iding region. Click Continue . What happened?

(Activity C continued on next page)

Activity C (continued from previous page)

5.	<u>Summarize</u> : Now create a balanced equation for that shows the entire hydrolysis reaction. (In other words, the equation should show how the oligosaccharide broke up into three separate glucose molecules.)		
	Turn on Show current formula/equation to check your answer.		
6.	<u>Compare</u> : How do hydrolysis reactions compare to dehydration synthesis reactions?		
7.	Apply: Amylose is a carbohydrate that consists of a single chain of hundreds of glucose molecules. Consider an amylose molecule with only four glucose molecules.		
	A. How many water molecules are released when the 4-glucose amylose forms?		
	B. What do you think is the chemical formula for this amylose?		
	C. How many water molecules would be needed to break this amylose down into four		
	glucose molecules?		
8.	Extend your thinking: Hydrolysis of the carbohydrates you eat begins in your mouth as you chew. How do you think this process might be affected if a person's salivary glands were unable to produce saliva, which is mostly composed of water?		

