

Name:	Date:	

Student Exploration: Determining Density via Water Displacement

Vocabulary: Archimedes' principle, density, displacement, mass, volume

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

A ship floats by an iceberg as shown.

1.	Based on the picture, which object is
	denser, the iceberg or the ship?

2.	How do you know?	
	•	

Gizmo Warm-up

Have you ever gotten into a bath and noticed the water level rise? Have you added potatoes to a full pot of water and had water spill over the sides? If so, you have witnessed a phenomenon called **displacement**, in which water or another fluid is pushed out of the way when a solid object is submerged in the fluid.

The *Determining Density via Water Displacement* Gizmo allows you to calculate the **density**, or mass per unit volume, of an object using nothing but a graduated cylinder and a container of water.

1.	Place object A into the water. Does it float or si	nk?
2.	Click Reset . Add each object to the water, one	at a time. (Click Reset after each trial.)
	Which objects float?	Which objects sink?
3.	Which object do you think is densest?	Least dense?
	Evolain:	

Activity:	Get the Gizmo ready:	-
Finding density	Click Reset.	

Introduction: Over 2,000 years ago, the Greek mathematician Archimedes discovered that an object in water is pushed up by a force equal to the weight of the displaced water. This law, called **Archimedes' principle**, has two consequences:

- If an object floats, its mass is equal to the mass of the displaced water.
- If an object sinks, its **volume** is equal to the volume of the displaced water.

Qι	estion	: How do you find the density of an object without using a balance?
1.		<u>ure</u> : Drop object A into the water. Notice the water displaced into the graduated er to the left of the container. The unit of volume is the milliliter (mL).
	A.	How much water is displaced by object A?
	B.	Water has a density of 1 gram per milliliter (1 g/mL). Based on its density, what is the
		mass of the displaced water?
	C.	Use Archimedes' principle to determine the mass of object A :
2.	centim	<u>ure:</u> The volumes of solid objects are measured in cubic centimeters (cm³). One cubic leter is exactly the same volume as one milliliter. Click Reset . Notice that object F has me volume as object A . Drag object F into the water.
	A.	Does object F float or sink?
	В.	How much water is displaced by object F , in mL?
	C.	What is the volume of object F , in cm ³ ?
	D.	What is the volume of object A?
3.		<u>ate</u> : The density of an object is equal to its mass divided by its volume: $D = m \div V$. ensity of solids is measured in grams per cubic centimeter (g/cm ³).
	What i	s the density of object A?
4.		<u>re</u> : Click Reset and drop object A back into the water. About what percentage of A is under the water? How is this percentage related to the density of object A ?

(Activity continued on next page)

Activity (continued from previous page)

5. <u>Gather data</u>: Click **Reset**. Find how much water is displaced by objects **B**, **C**, **D**, and **E**. Record your measurements below. Include units.

Object	Volume of displaced water	Floats or sinks?
В		
E		

Object C:

Object	Volume of displaced water	Floats or sinks?
С		
D		

6.	and E . Recall that the volume of a sin	alculate: Use your data to find the mass, volume, and density of the two floating objects, C and E . Recall that the mass of a floating object is equal to the mass of displaced water, and be volume of a sinking object is equal to the volume of displaced water. Assume objects B and E have the same volume, as do objects C and D .		
	Object C :	Mass:	_ Volume:	Density:
	Object E :	Mass:	Volume:	Density:

7.	Analyze: Drag objects C and E into the water. Estimate the percentage of these objects that
	are submerged below the waterline. List these estimates below:

,,	
How do these estimates relate to the densities you calculated above?	

Object E:

- 8. Think and discuss: Why can't you use this Gizmo to measure the densities of objects **B**, **D**, and **F**? If possible, discuss your answer with your classmates and teacher.
- 9. <u>Challenge</u>: What can you say about the densities of objects **B**, **D**, and **F**? Is there a way to compare the relative densities of these three objects? Explain.

