Name:

Date:

# **Student Exploration: Graphs of Derivative Functions**

## Vocabulary: derivative

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. The slope of a line tells you the rate of change of *y*, relative to *x*.

What is the slope of the line shown here?

2. The graph of  $y = x^2 - 3$  is shown to the right. In general, how is the "slope" of a parabola different from the slope of a line?





## Gizmo Warm-up

The **derivative** of a function f(x), denoted f'(x), is the rate of change of the function at a point. If the graph is a curve, the derivative is the slope of the tangent line. In the *Graphs of Derivative Functions* Gizmo, you will find the derivatives of several functions, and explore the graphs of derivative functions.

At the top left of the Gizmo, select **Linear function**. Set *a* to 3 and *b* to -5 to graph y = 3x - 5. (To quickly set a specific value, type the value in the text box, and hit **Enter**.)

1. What do you think the derivative of f(x) = 3x - 5 is?

Why?\_\_\_\_\_

Select **Show derivative** to check your answer.

2. Vary **b**. Explain why changing the value of b does not affect the derivative.





| Activity A:           | Get the Gizmo ready:                                                                                | 2         |
|-----------------------|-----------------------------------------------------------------------------------------------------|-----------|
| Quadratics and cubics | <ul> <li>Select Quadratic function and Show function.</li> <li>Turn off Show derivative.</li> </ul> | -4 -2 2 4 |

1. Set **a** to 1, **b** to 0, and **c** to -2 to graph  $f(x) = x^2 - 2$ . Take a look at its graph in the Gizmo.

A. Where is the "slope" of the graph of  $f(x) = x^2 - 2$ :

positive?

B. The "slope" of a curve at a point is the slope of the line tangent to the curve at that point. (This is usually called the derivative.) Select Show tangent line. Drag the red point along the parabola, and watch the blue tangent line as you do.

Where is the slope of the tangent line zero? \_\_\_\_\_

Explain why this makes sense.

negative?

2. Graph  $f(x) = 0.5x^2 - 4$ . Select **Show derivative**. Drag the red point. The y-values on the light blue line give you the slope of the dark blue tangent line at the current x-value.

A. What does the light blue line tell you about the derivative of  $f(x) = 0.5x^2 - 4$ ?

- B. Vary **a**, **b**, and **c**. What type of function is the derivative of a quadratic?
- C. Vary **c**. How does c affect the derivative?

Explain why this makes sense.

D. Set **b** and **c** to 0. Vary **a**. In general, what is the derivative of  $f(x) = ax^2$ ?

This is an example of the *power rule*: the derivative of  $f(x) = x^n$  is  $f(x) = nx^{(n-1)}$ .

E. Vary **a**, **b**, and **c**. Look for a pattern in how these values affect the derivative.

In general, what is the derivative of  $f(x) = ax^2 + bx + c$ ? f(x) =\_\_\_\_\_

## (Activity A continued on next page)

### Activity A (continued from previous page)

- 3. With Show tangent line still selected, turn off Show derivative. Select Cubic function, and graph  $f(x) = x^3 + 5x^2 + 3x 4$ .
  - A. The graph should look like the one shown. Where is the "slope" of  $f(x) = x^3 + 5x^2 + 3x 4$ :

positive?

negative?

B. Drag the red point along the curve, and watch how the dark blue tangent line changes.

Where is the slope of the tangent line zero?

Explain why this makes sense.

- 4. Graph  $f(x) = 0.4x^3 + 2$ . Select **Show derivative**, and drag the red point along the curve.
  - A. What does the light blue curve tell you about the derivative of  $f(x) = 0.4x^3 + 2$ ?
  - B. Vary **a**, **b**, **c**, and **d**. What type of function is the derivative of a cubic?
  - C. Vary *d*. How does *d* affect the derivative?

Explain why.

- D. Vary **a**, **b**, **c**, and **d**, and look for a pattern in the derivative. In general, what is the derivative of  $f(x) = ax^3 + bx^2 + cx + d$ ? f'(x) =
- 5. Find the derivative of each function. Check your answers in the Gizmo.

A. If  $f(x) = 3x^2 - 4x - 5$ , then f'(x) =\_\_\_\_\_

- B. If  $f(x) = -0.3x^2 + 0.5x + 4$ , then f'(x) =\_\_\_\_\_
- C. If  $f(x) = -5x^3 + 2x^2 3x + 1$ , then f'(x) =\_\_\_\_\_
- D. If  $f(x) = 0.4x^3 1.5x^2 + 2x 4$ , then f'(x) =\_\_\_\_\_\_

2

-6

| Activity B:                 | Get the Gizmo ready:                                                                                                       | 2    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
| Absolute value<br>functions | <ul> <li>Turn off Show derivative.</li> <li>Select Absolute value function.</li> <li>Turn on Show tangent line.</li> </ul> | -2 2 |

- 1. Set *a* to 1 and *b* to -2 to graph f(x) = |x| 2. (Notice that, for absolute value functions, the tangent line is an extension of one part of the graph.) Drag the red point along the graph.
  - A. What is the equation of the left half of the graph (where *x* < 0)? \_\_\_\_\_\_
  - B. What is the equation of the right half of the graph (where x > 0)?
  - C. What is the derivative (slope) of the left half? \_\_\_\_\_ Of the right half? \_\_\_\_\_
  - D. If the graph of a function has a break in it (a hole or discontinuity), or if it has a sharp turn (like a corner), then the derivative (f(x)) is not defined at that point.

Where do you think *f*(*x*) for an absolute value function is undefined?

E. Based on what you have seen, how would you write the derivative of f(x) = |x| - 2?

Select **Show derivative** to check. (The light blue graph shows f(x) at all *x*-values.)

F. Vary **b**. How does b affect the derivative?

Explain why this makes sense.

- G. Vary **a** and **b** to see other absolute value functions. In general, what is the derivative of f(x) = a|x| + b? f(x) =\_\_\_\_\_
- 2. Find the derivative of each function. For A-D, check your answers in the Gizmo.

| Α. | If $f(x) =$ | x  + 4, | then | f(x) = |  |
|----|-------------|---------|------|--------|--|
|    |             |         |      |        |  |
|    |             |         |      |        |  |
|    |             |         |      |        |  |

- B. If f(x) = -2|x| 5, then f'(x) =\_\_\_\_\_\_
- C. If f(x) = 0.5|x| + 3, then f(x) =\_\_\_\_\_
- D. If f(x) = -1.4|x| + 3.7, then f'(x) =\_\_\_\_\_\_
- E. If f(x) = 4|x + 3| 2, then f(x) =\_\_\_\_\_

| Activity C:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Get the Gizmo ready:                                                                                                                                          | 2                     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Sine fun          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Turn off Show derivative.</li> <li>Select Sine function.</li> </ul>                                                                                  | 2 2                   |
| 1. Set <b>a</b> t | to 1, <b>b</b> to 1, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and <b>c</b> to 0 to graph $f(x) = \sin(x)$ . Drag the red point along the                                                                                    | e sine curve.         |
| A.                | Describe th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e graph of $f(x) = \sin(x)$ .                                                                                                                                 |                       |
| В.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>w tangent line</b> . The blue line is tangent to the curve. Drag does the slope of the tangent line (the derivative, or $f(x)$ ) of                        |                       |
| 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                       |
| C.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ow derivative. The light blue curve shows the values of th                                                                                                    |                       |
|                   | all x-values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . What is the derivative of $f(x) = \sin(x)$ ? $f'(x) =$                                                                                                      |                       |
| 2. Turn o         | off Show tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gent line and Show derivative. Then vary the values of <i>a</i>                                                                                               | and <b>b</b> .        |
| A.                | How do a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd <i>b</i> affect the graph?                                                                                                                                 |                       |
| B.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ow derivative</b> . Vary <b>a</b> and <b>b</b> again. How do the values of a<br>ve of sine functions? (Hint: Vary <b>b</b> first, with <b>a</b> set to 1.) | a and <i>b</i> affect |
| C.                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v does <i>c</i> affect the derivative?                                                                                                                        |                       |
| D.                | Use the slie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lers one more time to review what you've seen. In general,                                                                                                    | what is the           |
|                   | derivative o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $f(x) = a \sin(bx) + c?$ $f(x) =$                                                                                                                             |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f(x) of each function $f(x)$ . Then check your answers in the                                                                                                 |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n(x), then $f(x) =$                                                                                                                                           |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 <i>x</i> ) + 5, then <i>f</i> ( <i>x</i> ) =                                                                                                                |                       |
| C.                | If $f(x) = 2$ since $f$ | n(0.5x) - 3, then $f(x) =$                                                                                                                                    |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                       |

äl

|                                                                                | Get the Gizm                       | o ready:                                                                         |                                                                                                |                   |  |
|--------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------|--|
| The second • Selec                                                             |                                    | et <b>Show second derivative</b> .<br>k that <b>Show derivative</b> is selected. |                                                                                                | -2<br>-2<br>-2    |  |
| second derivative                                                              | f'(x) is the rate at v             | which $f(x)$ is changing                                                         | erivative <i>f</i> ( <i>x</i> ). So, in c<br>g. When the 2nd deriv<br>sitive, the graph is "co | ative is negative |  |
|                                                                                |                                    |                                                                                  | n. Red is the given fun<br>the second derivative                                               |                   |  |
| A. Select                                                                      | Linear function. V                 | /ary <b>a</b> and <b>b</b> . In gene                                             | ral, what is the 2nd de                                                                        | erivative of a    |  |
| linear f                                                                       | unction of the form                | f(x) = ax + b? $f'(x) = ax + b?$                                                 | = Why?                                                                                         |                   |  |
| B. Select                                                                      | Absolute value fu                  | Inction. Vary <b>a</b> and <b>b</b>                                              | o. In general, what is t                                                                       | he 2nd derivativ  |  |
| of <i>f</i> ( <i>x</i> ) =                                                     | = a x  + b?  f'(x) =               |                                                                                  | Why?                                                                                           |                   |  |
| C. Select                                                                      | Quadratic functio                  | n. Vary <b>a</b> , <b>b</b> , and <b>c</b> . I                                   | n general, what is the                                                                         | 2nd derivative    |  |
| $f(x) = \epsilon$                                                              | $f'(x) = ax^2 + bx + c?$ $f'(x) =$ |                                                                                  | Why?                                                                                           | Why?              |  |
| D. Select                                                                      | Cubic function. V                  | ary <b>a</b> , <b>b</b> , <b>c</b> , and <b>d</b> . In                           | general, what is the 2                                                                         | 2nd derivative of |  |
| $f(x) = \epsilon$                                                              | $1x^3 + bx^2 + cx + d?$            | f'(x) =                                                                          | Why?                                                                                           |                   |  |
| E. Select                                                                      | Sine function. Wr                  | nat is the 2nd derivati                                                          | ve of $f(x) = \sin(x)$ ? f'                                                                    | ( <i>x</i> ) =    |  |
| What is                                                                        | s the 2nd derivative               | $e 	ext{ of } f(x) = a \sin(bx) + b \sin(bx)$                                    | <i>c</i> ? <i>f</i> '( <i>x</i> ) =                                                            |                   |  |
|                                                                                |                                    |                                                                                  | <b>•</b> • •                                                                                   |                   |  |
|                                                                                | nd second derivativ                | ves of each function.                                                            | Check your answers                                                                             | in the Gizmo.     |  |
|                                                                                |                                    |                                                                                  | <i>Check your answers</i><br><i>f'(x)</i> =                                                    |                   |  |
| 2. Find the first a A. $f(x) = -$                                              | -4 <i>x</i> + 5                    | f(x) =                                                                           | ·                                                                                              |                   |  |
| <ol> <li>Find the first a</li> <li>A. f(x) = -</li> <li>B. f(x) = 2</li> </ol> | -4x + 5<br>$2x^2 - 3x + 4$         | f(x) =<br>f(x) =                                                                 | f'(x) =                                                                                        |                   |  |

