Name: \qquad Date: \qquad

Student Exploration: Graphs of Derivative Functions

Vocabulary: derivative

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. The slope of a line tells you the rate of change of y, relative to x.

What is the slope of the line shown here? \qquad

2. The graph of $y=x^{2}-3$ is shown to the right. In general, how is the "slope" of a parabola different from the slope of a line?
\qquad

Gizmo Warm-up

The derivative of a function $f(x)$, denoted $f^{\prime}(x)$, is the rate of change of the function at a point. If the graph is a curve, the derivative is the slope of the tangent line. In the Graphs of Derivative Functions Gizmo, you will find the derivatives of several functions, and explore the graphs of derivative functions.

At the top left of the Gizmo, select Linear function. Set a to 3 and \boldsymbol{b} to -5 to graph $y=3 x-5$. (To quickly set a specific value, type the value in the text box, and hit Enter.)

1. What do you think the derivative of $f(x)=3 x-5$ is? \qquad
Why? \qquad

Select Show derivative to check your answer.
2. Vary b. Explain why changing the value of b does not affect the derivative. \qquad
\qquad
\qquad

A	Get the	
Quadratics and cubics	- Select Quadratic function and Show function. - Turn off Show derivative.	${ }^{-2}\left({ }^{2}\right.$

1. Set \boldsymbol{a} to $1, \boldsymbol{b}$ to 0 , and \boldsymbol{c} to -2 to graph $f(x)=x^{2}-2$. Take a look at its graph in the Gizmo.
A. Where is the "slope" of the graph of $f(x)=x^{2}-2$:
positive? \qquad negative? \qquad
B. The "slope" of a curve at a point is the slope of the line tangent to the curve at that point. (This is usually called the derivative.) Select Show tangent line. Drag the red point along the parabola, and watch the blue tangent line as you do.

Where is the slope of the tangent line zero? \qquad
Explain why this makes sense. \qquad
\qquad
2. Graph $f(x)=0.5 x^{2}-4$. Select Show derivative. Drag the red point. The y-values on the light blue line give you the slope of the dark blue tangent line at the current x-value.
A. What does the light blue line tell you about the derivative of $f(x)=0.5 x^{2}-4$?
B. Vary $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}. What type of function is the derivative of a quadratic? \qquad
C. Vary \boldsymbol{c}. How does c affect the derivative? \qquad
Explain why this makes sense. \qquad
\qquad
D. Set \boldsymbol{b} and \boldsymbol{c} to 0 . Vary \boldsymbol{a}. In general, what is the derivative of $f(x)=a x^{2}$? \qquad
This is an example of the power rule: the derivative of $f(x)=x^{n}$ is $f(x)=n x^{(n-1)}$.
E. Vary $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}. Look for a pattern in how these values affect the derivative. In general, what is the derivative of $f(x)=a x^{2}+b x+c ? f(x)=$ \qquad
(Activity A continued on next page)

Activity A (continued from previous page)

3. With Show tangent line still selected, turn off Show derivative. Select Cubic function, and graph $f(x)=x^{3}+5 x^{2}+3 x-4$.
A. The graph should look like the one shown. Where is the "slope" of $f(x)=x^{3}+5 x^{2}+3 x-4$:
positive? \qquad
negative? \qquad
B. Drag the red point along the curve, and watch how the dark blue tangent line changes.

Where is the slope of the tangent line zero? \qquad
Explain why this makes sense. \qquad
\qquad
4. Graph $f(x)=0.4 x^{3}+2$. Select Show derivative, and drag the red point along the curve.
A. What does the light blue curve tell you about the derivative of $f(x)=0.4 x^{3}+2$?
B. Vary $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d}. What type of function is the derivative of a cubic? \qquad
C. Vary \boldsymbol{d}. How does d affect the derivative? \qquad
Explain why. \qquad
D. Vary $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d}, and look for a pattern in the derivative. In general, what is the derivative of $f(x)=a x^{3}+b x^{2}+c x+d ? \quad f(x)=$ \qquad
5. Find the derivative of each function. Check your answers in the Gizmo.
A. If $f(x)=3 x^{2}-4 x-5$, then $f(x)=$ \qquad
B. If $f(x)=-0.3 x^{2}+0.5 x+4$, then $f(x)=$ \qquad
C. If $f(x)=-5 x^{3}+2 x^{2}-3 x+1$, then $f(x)=$ \qquad
D. If $f(x)=0.4 x^{3}-1.5 x^{2}+2 x-4$, then $f(x)=$ \qquad

Activity B: Absolute value functions	Get the Gizmo ready: - Turn off Show derivative. - Select Absolute value function. - Turn on Show tangent line.	

1. Set \boldsymbol{a} to 1 and \boldsymbol{b} to -2 to graph $f(x)=|x|-2$. (Notice that, for absolute value functions, the tangent line is an extension of one part of the graph.) Drag the red point along the graph.
A. What is the equation of the left half of the graph (where $x<0$)? \qquad
B. What is the equation of the right half of the graph (where $x>0$)? \qquad
C. What is the derivative (slope) of the left half? \qquad Of the right half? \qquad
D. If the graph of a function has a break in it (a hole or discontinuity), or if it has a sharp turn (like a corner), then the derivative $(f(x))$ is not defined at that point.

Where do you think $f(x)$ for an absolute value function is undefined? \qquad
E. Based on what you have seen, how would you write the derivative of $f(x)=|x|-2$?
$f(x)=$ \qquad Explain. \qquad

Select Show derivative to check. (The light blue graph shows $f(x)$ at all x-values.)
F. Vary b. How does b affect the derivative? \qquad
Explain why this makes sense. \qquad
G. Vary \boldsymbol{a} and \boldsymbol{b} to see other absolute value functions. In general, what is the derivative of $f(x)=a|x|+b ? \quad f(x)=$ \qquad
2. Find the derivative of each function. For A-D, check your answers in the Gizmo.
A. If $f(x)=|x|+4$, then $f(x)=$ \qquad
B. If $f(x)=-2|x|-5$, then $f(x)=$ \qquad
C. If $f(x)=0.5|x|+3$, then $f(x)=$ \qquad
D. If $f(x)=-1.4|x|+3.7$, then $f(x)=$ \qquad
E. If $f(x)=4|x+3|-2$, then $f(x)=$ \qquad

| Activity C:
 Sine functions | Get the Gizmo ready:
 - Turn off Show derivative.
 - Select Sine function. | |
| :--- | :--- | :--- | :--- |

1. Set \boldsymbol{a} to $1, \boldsymbol{b}$ to 1 , and \boldsymbol{c} to 0 to graph $f(x)=\sin (x)$. Drag the red point along the sine curve.
A. Describe the graph of $f(x)=\sin (x)$. \qquad
B. Select Show tangent line. The blue line is tangent to the curve. Drag the red point again. How does the slope of the tangent line (the derivative, or $f(x)$) change?
\qquad
\qquad
C. Turn on Show derivative. The light blue curve shows the values of the derivative at all x-values. What is the derivative of $f(x)=\sin (x) ? f(x)=$ \qquad
2. Turn off Show tangent line and Show derivative. Then vary the values of \boldsymbol{a} and \boldsymbol{b}.
A. How do a and b affect the graph? \qquad
\qquad
B. Turn on Show derivative. Vary \boldsymbol{a} and \boldsymbol{b} again. How do the values of a and b affect the derivative of sine functions? (Hint: Vary b first, with \boldsymbol{a} set to 1.)
\qquad
\qquad
C. Vary c. How does c affect the derivative? \qquad
Explain why. \qquad
D. Use the sliders one more time to review what you've seen. In general, what is the derivative of $f(x)=a \sin (b x)+c ? \quad f(x)=$ \qquad
3. Find the derivative $f(x)$ of each function $f(x)$. Then check your answers in the Gizmo.
A. If $f(x)=3 \sin (x)$, then $f(x)=$ \qquad
B. If $f(x)=\sin (4 x)+5$, then $f(x)=$ \qquad
C. If $f(x)=2 \sin (0.5 x)-3$, then $f(x)=$ \qquad

The second derivative of $f(x)$ is the derivative of the first derivative $f(x)$. So, in other words, the second derivative $f^{\prime}(x)$ is the rate at which $f(x)$ is changing. When the 2nd derivative is negative, the graph of $y=f(x)$ is "concave down," and when it is positive, the graph is "concave up."

1. Be sure you have 3 graphs showing in the Gizmo now. Red is the given function $(y=f(x))$, light blue is the first derivative $(y=f(x))$, and green is the second derivative $\left(y=f^{\prime}(x)\right)$.
A. Select Linear function. Vary \boldsymbol{a} and \boldsymbol{b}. In general, what is the 2 nd derivative of a linear function of the form $f(x)=a x+b ? f^{\prime}(x)=$ \qquad Why? \qquad
\qquad
B. Select Absolute value function. Vary \boldsymbol{a} and \boldsymbol{b}. In general, what is the 2 nd derivative of $f(x)=a|x|+b ? \quad f^{\prime}(x)=$ \qquad Why? \qquad
\qquad
C. Select Quadratic function. Vary $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}. In general, what is the 2 nd derivative of $f(x)=a x^{2}+b x+c ? \quad f^{\prime}(x)=$ \qquad Why? \qquad
\qquad
D. Select Cubic function. Vary $\mathbf{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d}. In general, what is the 2nd derivative of $f(x)=a x^{3}+b x^{2}+c x+d ? \quad f^{\prime}(x)=\square$ Why? \qquad
\qquad
E. Select Sine function. What is the 2nd derivative of $f(x)=\sin (x) ? \quad f^{\prime}(x)=$ \qquad
What is the 2nd derivative of $f(x)=a \sin (b x)+c ? f^{\prime}(x)=$ \qquad
2. Find the first and second derivatives of each function. Check your answers in the Gizmo.
A. $f(x)=-4 x+5$
$f(x)=$ \qquad $f^{\prime}(x)=$ \qquad
B. $f(x)=2 x^{2}-3 x+4$
$f(x)=$ \qquad $f^{\prime}(x)=$ \qquad
C. $f(x)=5 x^{3}+0.5 x^{2}+x-3 \quad f(x)=$ \qquad $f^{\prime}(x)=$ \qquad
D. $f(x)=-3 \sin (2 x)-4$
$f(x)=$ \qquad
\qquad
$f^{\prime}(x)=$
