Vocabulary: Determining a Spring Constant

Vocabulary

Gizmos

- <u>Displacement</u> overall change in position.
 - For example, if the bottom of a *spring* begins at 5.0 cm and stretches to 6.4 cm, its displacement is 6.4 cm 5.0 cm = 1.4 cm.
- Equilibrium a state of balance in which there is little or no total change.
 - A stretched spring reaches equilibrium when the force pulling it is equal to the *restoring force* that pulls the spring back.
- <u>Hooke's law</u> a law stating that, for an ideal spring, the displacement of the spring is directly proportional to the force on the spring.
 - Hooke's law is summarized by the equation $F_R = -kx$. In this equation, F_R is the restoring force, *k* is the *spring constant*, and *x* is the displacement.
- <u>Restoring force</u> a force that pulls a system back toward equilibrium.
 - When a spring is stretched beyond its equilibrium length, the restoring force pulls it back.
 - When a spring is compressed to a shorter length than its equilibrium length, the restoring force causes it to stretch out.
- <u>Slope</u> a measure of the steepness of a line.
 - You can calculate the slope between two points by dividing the vertical rise by the horizontal run.
- <u>Spring</u> a coiled device that returns to its original shape after it is stretched or compressed.
 - Springs usually are made of metal or plastic.
- <u>Spring constant</u> a measure of how much force is needed to stretch or compress a spring.
 - The symbol for the spring constant is *k*.
 - The greater the spring constant, the stiffer the spring.
- <u>Weight</u> a measure of the gravitational force exerted on a mass.
 - Weight is represented by the symbol *w*.
 - The formula for weight is w = mg, where g is gravitational acceleration.
 - On Earth's surface, $g = 9.81 \text{ m/s}^2$.