

Name: _____

Date:

Student Exploration: Embryo Development

Vocabulary: Blastula, Carnegie stages, differentiation, ectoderm, embryo, embryology, embryonic stem cells, endoderm, fetus, gastrula, inner cell mass, mesoderm, morula, neurula, primitive streak, trilaminar disk, zygote

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. The images below show **embryos** of different species at different stages of development. Label the images below with 1-4 from least developed to most developed.

2. Which image above do you think is a human? Explain.

Gizmo Warm-up

Embryology is the study of the development of embryos from a single cell to a multicellular **fetus**. In the *Embryo Development* Gizmo, you will compare the development of different animals and learn the details of mammalian development. To begin, be sure the COMPARE tab is selected.

1. What do the images have in common?

Click on the check box to turn on **Scale bars and labels**. You are observing the **zygotes**, or fertilized single cells, of five animals.

2. At this point, are you able to tell which animal is which? _____ Explain. _____

Activity A	Get the Gizmo ready:	
Comparative embryology	 Make sure the COMPARE tab is selected and the Developmental stage slider is on stage 1. Turn off Scale bars and labels. 	

Introduction: Comparative embryology compares embryos of different species to gain insight into how they are related. To provide a framework for this comparison, embryologists divide this process into 23 **Carnegie stages**. You will look at seven of these stages in this activity.

Question: Can we use comparative embryology to determine the relatedness of species?

<u>Challenge</u>: Drag the labels to the embryos you think they belong to. Fill in the first row of the table below with your guesses. Then, move the **Developmental stage** slider one position to the right, to Carnegie stage 4. Rearrange your labels if necessary and fill in the next row of the table. Continue until you get to stage 23. Don't turn on the **Reveal answers** check box until the end. (Note: Your guesses may change as you go through the stages. Don't worry, they won't be graded - this is just for fun!)

Stage	Α	В	С	D	E
1					
4					
8					
13					
16					
20					
23					

2. <u>Reveal</u>: Click **Reveal answers**.

- A. Did you guess correctly in the end?
- B. At which stage were you able to tell which was which? _____

Explain:

3. <u>Observe</u>: Drag the **Developmental stage** slider back to stage 8. Turn on **Scale bars and**

labels. What structure does all of the embryos have in common?

The neural groove will fold into a neural tube and will become the central nervous system.

(Activity A continued on next page)

Activity A (continued from previous page)

4. <u>Observe</u>: Switch to stage 13. What do all of the embryos have in common at this stage?

In mammals, brachial arches develop into structures in the head and neck. In fish and frogs they become part of the jaw and structures that support the gills (and are eventually lost in frogs). Somites are blocks of tissue that divide an embryo into segments that will become part of the vertebrae. The tail bud is tissue that helps form the posterior of the animal.

5. <u>Compare</u>: Go to stage 16.

A. What structure does all five embryos have in common?

B. What structures are missing from the frog and fish?

Frogs are born as limbless tadpoles and their arms and legs develop later.

6. <u>Compare</u>: Go to stage 20. What structure does mice and humans have in common that are

missing from the other organisms?

7. <u>Discuss</u>: Looking at the similarities and differences between the organisms throughout development, which organisms are more closely and more distantly related to one another?

Explain.

8. <u>Think and discuss</u>: How do the similarities and differences between embryos provide

evidence that evolution has occurred?

Activity B:	Get the Gizmo ready:	Pito
Investigating early development	 Switch to the DIFFERENTIATION tab. Make sure Investigation is selected. 	0000

Introduction: In the investigation mode, you will make your own observations about mammalian embryo development.

Question: How does an embryo develop from a single cell to a multicellular organism?

- 1. <u>Observe</u>: You are observing a single fertilized cell, right after a sperm and egg cell combined. Click **Start** to observe the cell undergoing morulation. Describe what you see.
- 2. <u>Observe</u>: Click **Continue** to watch the embryo undergo blastulation.

	Α.	A. Describe what you see.		
	В.	Which developmental stage, from the COMPARE tab, does the embryo most		
		resemble?		
3.	<u>Observ</u>	ve: Click Continue to watch the embryo undergo gastrulation. Describe what you see.		
4.	<u>Observ</u>	ve: Click Continue to watch the embryo undergo neurulation. Describe what you see.		
	lf you o	click Continue again, you will see that this embryo will eventually grow into a gorilla.		
(A	ctivity	B continued on next page)		

Activity B (continued from previous page)

5. <u>Experiment</u>: During development, cells undergo **differentiation** to become specialized cells such as muscle cells or nerve cells. You can investigate how this happens by dying certain cells and seeing what they become.

Click **Start over**, then **Start** to return to the end of morulation. Drag the syringe on the left to the embryo on the right and release to label cells with a colored dye. The cells on the outside can be labeled one color and the cells on the inside can be labeled another. Click **Continue** until "Gastrula" is highlighted on the flow chart.

Which cells become the gastrula?

The cells that disappear here will become part of the placenta, a fluid-filled organ that provides nutrients to the fetus, while the other cells will become part of the adult organism.

6. <u>Observe</u>: Click **Start over**. Then click **Start** and **Continue** twice to reach the **blastula** stage. The cells inside the blastula have migrated to one side, creating a hollow center. Use the needle to label the cells on both the inside and the outside of the mass, against the hollow center. Click **Continue** three times to advance to the end.

Which cells become the body of the organism?

The blue cells that were up against the hollow center will become the primitive yolk sac, a fluid filled structure that provides nutrients to the embryo before the placenta forms.

- 7. <u>Observe</u>: Click **Start over**. Then click **Start** and **Continue** to reach the gastrula stage. Notice there are three layers of cells inside the embryo. Use the needle to label those cells, then advance to the end.
 - A. What does the top layer of cells (blue) become in the adult? (Note the cell types

will be color-coded in the adult.) _____

B. What does the middle layer (red) become?

C. What does the bottom layer (yellow) become?

D. Each of the three cell layers became different parts of the adult organism. What does that mean about the cells that were once identical?

Activity C:	Get the Gizmo ready:	5
Details of development	 On the DIFFERENTIATION tab, select the Summary mode. 	

Introduction: Now that you've made some observations, you will go back and learn more about what is going on. In the summary mode, the steps in development will be explained.

Question: How do cells differentiate during early development?

- 1. <u>Observe</u>: Click **Start** to watch morulation. Read the descriptions as you go.
 - A. What is a **morula**?
 - B. Click Continue again. Describe compaction.

- 2. <u>Observe</u>: Click **Continue** to watch blastulation. Label the diagram at left.
 - A. What happens to the embryoblasts?
 - B. What is the blastocoel?
- C. Click **Continue**. What cells form in the **inner cell mass**?

Embryonic stem cells, cells that have the ability to differentiate into all the cells in the organism, may be collected from the inner cell mass at this developmental stage.

D. Click Continue. What forms inside the epiblasts, and what will this structure do for

the fetus?

E. Click **Continue**. What do the hypoblasts become and what will that structure do for

the embryo? _____

Note: The trophoblasts will no longer be shown here, but they continue to provide support for the embryo and become part of the placenta later in development.

(Activity C continued on next page)

Ac	tivity C	(cont	inued from previous pag	e)	000000
3.	Observ	<u>ve</u> : Clio	ck Continue to watch gast	rulation.	
	A.	Desci	ribe what happens to the	· · · · · · · · · · · · · · · · · · ·	
		epibla	ast cells.		000000000000000000000000000000000000000
				_	
					e e e e e e e e e e e e e e e e e e e
	В.	Click	Continue . What is the pri	mitive streak?	00000
	C.	Click	Continue , then label the d	liagram above. What happ	ens to the epiblasts now?
4.	Observ	<u>ve</u> : Clio	ck Continue to watch neur	ulation.	
	A. Describe what happens to the trilaminar disk .				
	B.	Click	Continue. Click the left, rig	ght, up and down arrows to	o observe different parts of
		the er	mbryo. What do you notice	about its shape?	
	C.	Switc	h to the COMPARE tab. W	hich developmental stage	most resembles the
		neuru	ula on the DIFFERENTIAT	ION tab?	
	D.	Switc	h back to the DIFFERENT	IATION tab and click Cont	t inue . What will the neural
		tube e	eventually form?		
5.	. <u>Observe</u> : Click Continue . Click on different parts of the gorilla diagram to learn what the endoderm , mesoderm and ectoderm cells become. Fill out the table below.				
			Ectoderm	Mesoderm	Endoderm
	Struc	cture			

