Name:

Date:

Student Exploration: Estimating Sums and Differences

Vocabulary: difference, estimate, sum

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

An **estimate** is a rough calculation, or best guess. A good estimate is reasonably close to the exact answer, and is also easy to do in your head.

1. Amy's lunch costs \$5.03, and her dessert is \$2.99. To estimate her total cost, she rounds each price to the nearest dollar and adds. Fill in the blanks below to show her estimate.

	\$5.03 + \$2.99 ≈ +	=_	
2.	Is the estimate above a good estimate? _		Explain

Gizmo Overview

In the *Estimating Sums and Differences* Gizmo, you will use benchmarks (numbers used to make estimates) to add and subtract fractions.

Here's how the Gizmo looks at first:

Read your feedback in the Gizmo after you click **Check**. If your answer is incorrect, click **Reset** and drag the red and blue models to different benchmark fractions. When you're done, click **New** for a different problem to work on.

Activity:	Get the Gizmo ready:			
Choosing benchmarks	• You should see the problem $\frac{11}{16} + \frac{6}{20}$. If not, click Refresh in your browser.			
	Refresh in your browser. $\frac{1}{4}$			
1. When you begin	, you should see the problem shown to the right. $\frac{11}{16} + \frac{6}{20} = \frac{?}{?}$			
A. First, com	pare the red and blue models for $\frac{11}{16}$ and $\frac{6}{20}$ to the gray benchmarks.			
What ben	chmarks appear to be closest to each? $\frac{11}{16} \approx \frac{6}{20} \approx \frac{6}{20}$			
B. Drag the r	nodels for $\frac{11}{16}$ and $\frac{6}{20}$ and drop them on the benchmarks you chose. Clic			
	d try again if your estimate is incorrect. Then complete the equation below			
11	6			
$\frac{11}{16}$ +	$\frac{6}{20} \approx \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$			
C. Click Solv	re to see the exact sum. What do you notice about the exact sum and the			
estimate?				
2. Click New . You s	hould now see the problem shown to the right. $\frac{23}{24} - \frac{5}{19} = \frac{?}{?}$			
A. Notice that	t the numerator and denominator of $\frac{23}{24}$ are very close ill in the equation to show the benchmark you should =			
in value. F choose fo	ill in the equation to show the benchmark you should			
B. Divide or u	use a calculator to find the decimal equal to $\frac{5}{19}$. How can the decimal			
help you f	ind the benchmark for this fraction?			
C. Drag each	model to its benchmark. What is the estimated difference?			
Check you	ur answer in the Gizmo.			
3. Click New . Work	through more problems in the Gizmo.			

(Activity continued on next page)

Activity (continued from previous page)

4. Use the benchmarks $\frac{0}{4}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, and $\frac{4}{4}$ to estimate each answer. Write all your steps in the space below each problem.

A.
$$\frac{8}{11} + \frac{5}{17}$$
 E. $\frac{11}{25} + \frac{1}{30}$

B.
$$\frac{13}{14} - \frac{5}{9}$$
 F. $\frac{29}{31} - \frac{20}{28}$

C.
$$\frac{2}{11} + \frac{6}{10}$$
 G. $\frac{12}{26} + \frac{9}{40}$

D.
$$\frac{12}{13} - \frac{6}{7}$$
 H. $\frac{56}{75} - \frac{41}{52}$