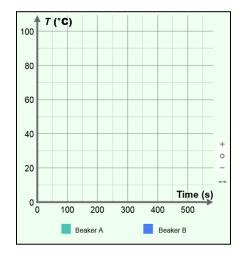
Na	ame: Date:	
	Student Exploration: Heat Transfer by Conducti	on
	ocabulary: conduction, convection, insulate, radiation, thermal conductor, thermal enemental insulator	ergy,
Su	rior Knowledge Questions (Do these BEFORE using the Gizmo.) uppose two frying pans have been left on the stove with the burners on. One of the fryi as a metal handle and the other has a wooden handle.	ng pans
1.	. Which handle do you think you could safely touch?	
2.	. Why do you think one handle will be cooler than the other?	
He sp dir ex To Ch	eat, also called thermal energy , can be transmitted through cace (radiation), by moving fluids (convection), or through irect contact. This final method, called conduction , is explored in the <i>Heat Transfer by Conduction</i> Gizmo. To begin, check that Aluminum is selected. Select the BAR HART tab and turn on Show numerical values . What is the initial temperature of each beaker? Beaker A Beaker B	
2.	. Click Play (▶) and observe.	
	A. What happens to the temperature of Beaker A over time?	
	B. What happens to the temperature of Beaker B over time?	
3.	. Why do you think the temperatures of Beaker A and Beaker B changed as they did	?

Activ	ity	A:
	_	

Get the Gizmo ready:

Measuring heat transfer

• Click Reset (2).



Question: How does the temperature difference between two containers relate to the rate of temperature change?

Observe: Select the GRAPH tab and press Play.
 Wait until the temperatures of the two beakers are both close to 50 °C, and use the zoom out button (–) to see the whole graph. Sketch the graph in the space at right.

What does the graph show about the rate of temperature change over time?

- 2. <u>Form hypothesis</u>: How do you think the temperature difference between the beakers relates to the rate of heat transfer?
- 3. <u>Gather data</u>: Select the TABLE tab. Click **Reset**, and then click **Play**. Click **Pause** () every 100 seconds (does not have to be exact). Each time you click **Pause**, record the temperature of each beaker and their temperature difference in the table below. (To find the temperature difference, subtract the temperature of beaker B from that of beaker A.)

Time (s)	Beaker A temp. (°C)	Beaker B temp. (°C)	Temp. difference (°C)
0 s			
100 s			
200 s			
300 s			
400 s			
500 s			
600 s			

(Activity A continued on next page)

		•	, ,, ,	_	A 4
age	previous r	trom	(continued	· A	Activity
7	DI CAIORO F	11 0111	COILLIIUCU	$\boldsymbol{\wedge}$	ACLIVILY

4.	Calculate: At each time, what is the su	m of the	temperatures in ea	ach beaker?	
5.	Apply: In this simulation, the beakers a energy (heat) is lost to the outside env how do you think the sum of their temp	ironmen	. If the beakers we	ere <i>not</i> perfectly insulated,	
6.	Compare: For each beaker, determine seconds and how much it changed bet temperature difference between the be	ween 50	0 and 600 second	s. Compare this to the	
	Value	0-	100 s interval	500–600 s interval	
	Beaker A temperature change				
	Beaker B temperature change				
	Temperature difference between Bea and Beaker B at 0 seconds.	ker A			
	Temperature difference between Bea and Beaker B at 500 seconds.	ker A			
7.	Analyze: How does the rate of temperature change depend on the temperature difference between the two beakers?				
8.	Think and discuss: Why do you think the rate of temperature change does not stay constant over time? If possible, discuss your answer with your teacher and classmates.				

Activity B:		Get the Gizmo ready:				
	enductors and sulators	Click Reset.Select the TABL	Click Reset.Select the TABLE tab.			
			ss through easily are calle alled thermal insulators.	d thermal conductors.		
Que	estion: Which ma	terials are the best co	nductors? Which are the	e worst conductors?		
	Predict: In the Giz insulated beakers.		num, copper, steel, or glas	s to connect the two		
	A. Which mat	erial do you think will be	e the best thermal conduc	tor?		
	B. Which mat	erial do you think will be	e the best thermal insulato	or?		
	<u>Gather data</u> : With Aluminum selected, click Play . Click Pause after about 200 simulated seconds. Record the temperature of each beaker at 200 seconds. Next, calculate the temperature change of Beaker A . Repeat with each material to complete the table.					
	Material	Beaker A temp. at 200 seconds (°C)	Beaker B temp. at 200 seconds (°C)	Beaker A temp. change (°C)		
	Aluminum					
	Copper					
	Steel					
	Glass					
3.	Analyze: What do	es your data indicate? _				
	Classify: Which materials would you classify as thermal conductors, and which would you classify as an insulator? Which material was the best thermal conductor?					
	Thermal conductors:					
	Thermal insulator:		Best thermal condu	ctor:		

