Vocabulary: Hyperbolas

Vocabulary

- Asymptote - a line that a curve approaches as the curve goes to infinity.
- A hyperbola has two asymptotes that intersect at the center.
- Conic section - a curve formed by the intersection of a plane and one or two right circular cones.
- For example, the intersection of the plane and the two cones shown to the right is a hyperbola.
- Parabolas, hyperbolas, ellipses, and circles (which are special ellipses) are all conic sections.

- Foci of a hyperbola (focus points) - the two fixed points, located on the line that contains the transverse axis, that define a hyperbola.
- The absolute value of the difference of the distances from any point on a hyperbola to the foci is constant and equal to $2 a$.
- Hyperbola - the set of all points in a plane for which the absolute value of the difference of the distances from two fixed points, the foci, is constant.
- $\left|L_{1}-L_{2}\right|=2 a$, where a is the distance from the center
 to either of the vertices.
- Pythagorean Theorem - a theorem stating that, for any right triangle, $a^{2}+b^{2}=c^{2}$, where a and b are the lengths of the legs of the triangle and c is the length of the hypotenuse.

- Standard form of the equation of a hyperbola - the equation representing a set of points in the coordinate plane for which the absolute value of the difference of the distances from two fixed points, the foci, is constant.
- If the hyperbola opens horizontally, standard form is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.
- If the hyperbola opens vertically, standard form is $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$.
- In either case, the point (h, k) is the center of the hyperbola.
- Transverse axis - the line segment through the center of a hyperbola with endpoints at the vertices.
- Vertices of a hyperbola - the point on each branch of a hyperbola closest to the center.

