

Name:

Date:

100

95 90

85

80

75

70

65

0

Test score

## **Student Exploration: Least-Squares Best Fit Lines**

**Vocabulary:** least-squares best fit line, outlier, residual, scatter plot, trend line

**Prior Knowledge Questions** (Do these BEFORE using the Gizmo.)

Mr. Moore asks his students how long they studied for their last history test. He plots the study times and test scores on a scatter plot, shown to the right. (Each point represents a student's information.)

1. Based on the scatter plot, does study time seem to

have an effect on test scores?

Explain.

2. Draw a line through the scatter plot that best "fits" the data. Based on this line, about what

test score would you predict for a student who studied for 50 minutes?

## Gizmo Warm-up

When statisticians look at data on a **scatter plot**, it is often useful to fit a **trend line** to the data to approximate how one variable is related to the other. There are several ways of plotting trend lines, but the most common is the **least-squares best fit line**, as illustrated in the *Least-Squares Best Fit Lines* Gizmo.

Turn on **Show least-squares fit line**. Notice the green leastsquares best-fit line plotted on the graph. Click **New data set** several times.



10 20 30 40 50 60 70

Minutes of study

1. Does the least-squares fit line always go through every point in the scatter plot?

- 2. Does the least-squares fit line always go through at least one point in the plot?
- 3. In general, how does the least-squares fit line relate to the points on the scatter plot?



| Activity A:            | Get the Gizmo ready:                                                                   | 2                |
|------------------------|----------------------------------------------------------------------------------------|------------------|
| Estimating trend lines | <ul> <li>Turn off Show least-squares fit line.</li> <li>Click New data set.</li> </ul> | -6 -4 -2 2<br>-2 |

1. Turn on **Fit a line**. Use the *m* and *b* sliders to try to fit the line to the data. Write the equation for your line in the left column of the table below. Then, turn on **Show least-squares fit line** and write the actual equation of the line.

| Data set | Equation of<br>estimated best-fit line | Equation of<br>actual least-squares line |
|----------|----------------------------------------|------------------------------------------|
| 1        |                                        |                                          |
| 2        |                                        |                                          |
| 3        |                                        |                                          |

Next, turn off **Show least-squares fit line**, click **New data set**, and fit the line again. Continue for two more data sets to complete the table.

In general, how well were you able to fit a line, compared to the actual least-squares fit line?

- 2. To see how the least-squares method works, turn off **Show least-squares fit line** and check that **Fit a line** is on. Set *m* to 1 and *b* to 0, to graph y = x. (To quickly set the value of a slider, type the number in the text field to the right of the slider, and hit **Enter**.) Drag the red points to these coordinates: (-6, -6), (-4, -4), (-2, -2), (2, 2), (4, 4), and (6, 6).
  - A. Turn on **Show error squares**. The **Total error** should be 0.00. (If not, check the coordinates of each point and adjust as necessary.)
  - B. Move the point at (2, 2) to (2, 0). An "error square" is now shown. What is the side

length of the error square? \_\_\_\_\_ What is its area? \_\_\_\_\_

- C. What is the total error?
- D. Move the point at (6, 6) to (6, 3). What are the side length and area of the error

square for this point? Side length = \_\_\_\_\_ Area = \_\_\_\_\_

E. What is the **Total error** now?

The vertical distance between a point and the best-fit line is called the **residual**. The least-squares method finds the total error by summing the squares of the residuals. The best fit line is the line with the smallest possible total error.

## (Activity A continued on next page)



## Activity A (continued from previous page)

3. Turn off **Fit a line**, and be sure **Show leastsquares fit line** is still off. Click **New data set**. Sketch the data set on the grid to the right.

Next, turn on **Fit a line**. Adjust *m* and *b* until you create a line with the smallest total error.

A. What is the equation of your line?

*y* = \_\_\_\_\_

- B. What is the total error?
- C. Turn on Show least-squares fit line.

6 4 2 -8 -6 -4 -2 2 4 6 8 -2 -3 -4 -6 -8 -8

What are the equation and total error of the actual least-squares best fit line?

Equation: *y* = \_\_\_\_\_

Total error:

- D. Use the same procedure to estimate the least-squares best fit line for several other data sets. How well were you able to estimate the best-fit line when you could see the total error, compared to when you could not? Explain your answer.
- 4. The scatter plot to the right shows low-density lipoprotein (LDL) levels vs. weekly hours of exercise for patients in a fictional study. ("LDL's" are often called "bad cholesterol.") The least-squares best fit line is shown.
  - A. Estimate the equation of the least-squares line:

*y* = \_\_\_\_\_

B. Based on the equation, what LDL level would you

expect if you exercised 0 hours per week?



- C. What LDL level would you expect if you exercised 11 hours per week?
- D. High levels of LDLs in the blood have been associated with greater risk of heart disease. What does this graph indicate about the possible benefits of exercise?



| Activity B:<br>Limitations of<br>least-squares | <ul> <li>Get the Gizmo ready:</li> <li>If necessary, turn off Fit a line and Show least-squares fit line.</li> </ul> | -8 -6 -4 -2 |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|
| •                                              | •                                                                                                                    |             |

1. Drag the points on the scatter plot to these coordinates: (-8, 4), (-5, 2), (-2, 0), (1, -2), (4, -4), and (7, -6). Turn on **Show least-squares fit line**. The points should all be on a line with the equation y = -0.67x - 1.33.

Next, move the point at (7, -6) to (8, 8). This point, which does not follow the trend of the rest of the data, is called an **outlier**. Sketch the new scatter plot and trend line in the grid to the right.

A. How did the outlier affect the least-

squares best fit line?



B. In your opinion, does the least-squares line describe this data set well? \_\_\_\_\_

Explain.

2. Turn off **Show least-squares fit line**. Drag the points to the following coordinates: (-6, 6), (-4, 4), (-2, 2), (2, 2), (4, 4), (6, 6). This data represents y = |x| (absolute value of *x*).

A. How would you describe this data distribution?

- B. Do you think of best-fit line will be useful in describing this data set? Why or why not?
- C. Turn on Show least-squares fit line. What is its equation?
- D. Do you think the least-squares best fit line describes this data set well? \_\_\_\_\_
  - Explain.

Lines of best fit are most useful when data shows a linear relationship. Many relationships, including y = |x|, are not linear and are not described well by linear trend lines.