

Name: ____

Date: _____

Student Exploration: Magnetism

Vocabulary: attract, bar magnet, ferromagnetic, magnetize, north pole, repel, south pole

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. What happens when you place two magnets close together? ______

- 2. What objects do magnets stick to? Make a list.
- 3. What do these objects have in common? ______

Gizmo Warm-up: What is attracted to magnets?

A **bar magnet** is a simple rectangular magnet. If you hang a bar magnet by a string, the **north pole** (N) of the magnet will tend to point north while the **south pole** (S) of the magnet points south.

1. Look at the materials at the bottom of the Gizmo. Which ones do you think will stick to a bar magnet?

2. **Ferromagnetic** materials are strongly attracted to magnets. Drag a bar magnet and the piece of **nickel** onto the scribbled line. Press **Play** ().

A. Is nickel ferromagnetic? _____

B. How do you know? _____

3. Test copper, wood, glass, and iron. Which ones are ferromagnetic? _____

	Get the Gizmo ready:	
Activity A: Attract or repel?	 Check that the MAGNETIC FORCES tab is selected. Click Reset (2). 	<mark>n s n s</mark>

Question: How do magnets interact?

- 1. Observe: Drag two bar magnets onto the paper and press Play. Then click Reset. Change one of the magnets (either from N-S to S-N, or vice-versa). Click Play again.
 - A. What happened the first time?
 - B. What happened the second time? _____
- 2. Form hypothesis: Magnets are either pulled together (attracted) or pushed apart (repelled). Based on what you have seen, when are magnets attracted and when are they repelled?
- 3. Predict: Based on your hypothesis, which pairs of magnets will be attracted to each other? Which will be repelled? Record your predictions below. (Leave the result blank for now.)

Left magnet	Right magnet	Prediction (Attract or repel?)	Result (Attract or repel?)
N S	S		
N S	S N		
S N	S N		
S N	NS		

- 4. Run Gizmo: Test your predictions using the Gizmo. Record your results in the table.
- 5. Draw conclusions: Fill in each blank below with the correct word.
 - A. The south pole of a magnet is attracted to the _____ pole of another magnet.
 - B. The south pole of a magnet is repelled by the _____ pole of another magnet.
 - C. The north pole of a magnet and the north pole of another magnet will ______ each other.

Activity B:	Get the Gizmo ready:	
Magnetic field lines	 Click Reset and drag all objects off the paper. Select the MAGNETIC FIELD LINES tab. 	

Question: If you scatter iron filings (little slivers of iron) around a magnet, you will see a pattern of magnetic field lines. What do these lines show you?

1. Observe: Drag one magnet onto the paper. Click Sprinkle filings and then Tap table five or six times. Sketch the pattern you see in the box:

What do you notice about the iron filings?

2. Observe: Drag a second magnet next to the first. Click Sprinkle filings and then click Tap table several times. Sketch what you see.

Will these magnets be attracted or repelled?

3. Observe: Now switch one of the magnets. Click Sprinkle filings and then click **Tap table** several times. Sketch what you see.

Will these magnets be attracted or repelled?

- 4. Draw conclusions: Compare the magnetic field lines you have sketched. How can you use the field lines to tell if magnets will be attracted or repelled?
- 5. Extend your thinking: Observe the magnetic field lines produced by an **N-S** magnet and the mystery magnet. Will these magnets attract or repel each other? First, make a prediction below. Then, check your answer on the MAGNETIC FORCES tab.

Prediction: _____ Actual result: _____

Extension:	Get the Gizmo ready:	A A A A A
Magnetic materials	 Select the MAGNETIC FIELD LINES tab. Drag an S-N magnet and the copper bar onto the paper. 	iron

Question: Why do magnets attract certain materials?

- 1. <u>Observe</u>: Click **Sprinkle filings** and then click **Tap table** several times. Look closely at the filings near the **copper** bar. Does copper have any effect on the filings?
- 2. Observe: Repeat the experiment with iron. What effect does iron have on the filings?
- 3. Analyze: Which of these materials is ferromagnetic?
- 4. <u>Draw conclusions</u>: How can you tell if an object is ferromagnetic by looking at its field lines? Discuss your answer with your teacher and classmates.
- 5. <u>Apply</u>: Select the MAGNETIC FORCES tab and experiment with the Gizmo. Try to answer the questions below. Share your findings with your classmates and teacher.
 - A. Can a magnet ever *repel* a ferromagnetic material?
 - B. In the Gizmo, does one ferromagnetic material attract another?
- <u>Experiment (optional)</u>: When a ferromagnetic material like iron is placed near a magnet, it becomes magnetized—it actually becomes a magnet! (Look at the field lines when iron is near a magnet.) Even after the magnet is removed, iron can stay magnetized for a while.

In "real life" (not in the Gizmo), rub a metal paper clip with a magnet. What happens when you touch another paper clip with your magnetized paper clip?

