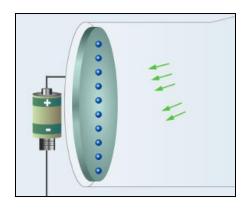


Name:	Date:	

Student Exploration: Photoelectric Effect

Vocabulary: electron volt, frequency, photoelectric effect, photon, photon flux, voltage, wavelength, work function


Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1.	Suppose you went bowling, but instead of a bowling ball you rolled a ping pong ball down
	the alley. What do you think would happen?
2.	Suppose you rolled a lot of ping pong balls at the bowling pins. Do you think that would
	change the results of your experiment? Explain.

Gizmo Warm-up

The **photoelectric effect** occurs when tiny packets of light, called **photons**, knock electrons away from a metal surface. Only photons with enough energy are able to dislodge electrons.

In the *Photoelectric Effect* Gizmo, check that the **Wavelength** is 500 nm, the **Photon flux** is 5 γ /ms, the **Voltage** is 0.0 volts, and **Potassium** is selected. Click **Flash the light** to send photons of light (green arrows) toward a metal plate encased in a vacuum tube.

1.	The blue dots on the metal plate are electrons. What happens when the photons hit the
	electrons?
2.	What happens when the electrons reach the light bulb?

When electrons reach the light bulb they complete a circuit, causing the bulb to glow briefly.

Activity A:	Get the Gizmo ready:	
Wavelength and flux	 Check that the Voltage is 0.0 volts and Potassium is selected. 	H

Introduction: Through the centuries, many scientists have debated whether light is a wave or a stream of tiny particles. In the 1800s, most scientists agreed that phenomena such as refraction and diffraction supported the "light as a wave" theory. However, Albert Einstein's explanation of the photoelectric effect showed that light can act like a stream of particles as well.

Question: What factors affect the ability of light to free electrons from a metal surface?

Observe: Click Flash the light with a variety of wavelength values. What do you notice		
2.	Observe: The photon flux is a measure of how bright the light is. It is equal to the number	
	of photons that are released in a given time. It is given as photons (γ) per millisecond (market Click Flash the light with a variety of Photon flux values. What do you notice?	,
3.	Form hypothesis: Answer the following questions based on what you have observed so	 far.
	A. Which factor determines how many photons will strike the metal? Explain:	
	B. Which factor determines how much energy each photon has? Explain:	
4.	nvestigate: Set the Photon flux to 1 γ/ms. Use the Gizmo to find the longest wavelengt	
	hat will dislodge an electron from the metal surface. What is this wavelength?	
5.	<u>Predict</u> : Set the Wavelength to 540 nm. What do you think will happen if you flash the li with a photon flux of 1 γ/ms? What if you flash the light with a flux of 10 γ/ms?	ght

(Activity A continued on next page)

Activity A (continued from previous page)

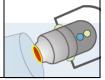
6.	<u>Test</u> : Click Flash the light with a Photon flux of 1 γ /ms and again with a flux of 10 γ /ms.			
	What	happened?		
7.	Explor	e: Set the Wavelength to 400 nm. Experiment with different photon fluxes.		
	A.	Does the photon flux affect how many electrons are emitted?		
		Explain:		
	B.	Does the photon flux affect the energy (speed) of the emitted electrons?		
		Explain:		
8.	of the that si	For mechanical waves, such as sound waves or ocean waves, increasing the intensity wave increases both the amplitude (height) of the wave and the energy it carries. In tuation, a low-frequency but high-intensity wave should have the same effect as a requency but low-intensity wave. How does light behave differently from this model?		
9.	differe	and discuss: How is firing photons at the surface of a metal analogous to rolling nt types of balls at a set of bowling pins? If possible, discuss your answer with your nates and teacher.		

	Get the Gizmo ready:	•	
Activity B: Voltage gradients	 Set the Wavelength to 300 nm, the Photon flux to 10 y/ms, and the Voltage to 0.0 volts. 	•	←0
Voltage gradients	Turn on Show voltage gradient.	← .	←

Introduction: The electrons that are freed from the surface of the metal have a specific amount of kinetic energy. Faster electrons have greater energies than slower ones. The energy of emitted electrons is measured by setting up an electrical field that opposes their motion. The **voltage** of the field is a measure of its strength.

Goal: Use a voltage gradient to measure the energy of emitted electrons.

1.	Observe: Check that Po electrons. Increase the V			
	How does the electrical	field affect the motion	of the emitted electrons	s?
2.	with an energy of 1 eV c	an overcome an elect	rical field of 1 volt. In th	ne Gizmo, increase the
	voltage until you find the	highest voltage that s	till allows the electrons	s to reach the light bulb.
	What is this value?	This is equ	al to the energy of the	emitted electrons in eV
3.	for potassium, calcium, a 250 nm and 200 nm to c	and uranium. Then me omplete the table.		s with wavelengths of
	Element	300 nm	250 nm	200 nm
	Potassium			
	Calcium			
	Uranium			
4.	Analyze: What patterns	do you notice in your o	data?	
5.	Infer: Based on your dat	a, which element is ha	ardest to extract electro	ns from?
	Explain:			



Activity C: Work functions

Get the Gizmo ready:

Lowest work function:

- Set the **Voltage** to 0.0 volts and select **Potassium**.
- You will need a calculator and a copy of the periodic table of the elements for this activity.

Highest work function:

Introduction: It is easier to remove electrons from some elements than others. The energy required to free an electron from the surface of a solid is the **work function** of the element.

Question: How much energy is required to liberate electrons from a material?

1.	<u>Predict</u> : In general, the difficulty of removing electrons increases from left to right across
	each row of the periodic table. Look up potassium (K), calcium (Ca), and uranium (U).
	Based on their positions in the periodic table, which of these elements do you expect to
	have the lowest work function? Which element will have the highest work function?

2. <u>Gather data</u>: Use the Gizmo to determine the highest wavelength for each element that still removes electrons. Fill in the first column below. (Leave the other columns blank for now.)

Element	Wavelength (nm)	Frequency (Hz)	Work function (eV)
Potassium			
Calcium			
Uranium			

3. <u>Calculate</u>: The **frequency** of a wave, measured in hertz (Hz), is the number of waves that passes a point each second. To calculate the frequency (f) of an electromagnetic wave, divide the speed of light (c) by the wavelength (λ):

$$f = \frac{c}{\lambda}$$

The speed of light is 299,792,458 m/s, or approximately 3.0×10^{17} nm/s. Using the equation, calculate the frequency of each wavelength given in the table. Fill in the second column.

4. <u>Calculate</u>: The energy of a photon depends on its frequency. The energy of a photon (*E*) in electron volts is equal to its frequency (*f*) multiplied by Planck's constant (*h*):

$$E(eV) = h \cdot f$$

In this calculation, h is equal to 4.136×10^{-15} eV·s. Calculate the work function of each element in the table above. (Note: The values in your table are approximations.)

(Activity C continued on next page)

Activity C (continued from previous page)

5.	<u>Draw conclusions</u> : Based on the calculated work function for each element, which element holds onto its electrons most tightly? Explain.
6.	Think and discuss: When the photoelectric effect was discovered, scientists were surprised that low-frequency light was unable to remove electrons, even when the light was very bright In other words, scientists expected the low frequency to be offset by the light's brightness.
	How does thinking about light as a stream of particles, rather than a single wave, explain this result? If possible, discuss your answer with your classmates and teacher.