

Name:

Date:

Student Exploration: Points in the Complex Plane

Vocabulary: additive inverse, complex conjugate, complex number, complex plane, imaginary unit, imaginary axis, imaginary number, quadratic formula, real axis, real number

Prior Knowledge Questions (Do these BEFORE using the Gizmo.) The **quadratic formula**, shown to the right, is used to find the solutions of a quadratic equation in the form $ax^2 + bx + c = 0$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1. Use the quadratic formula to find the solutions of $x^2 - 3x + 2.5 = 0$. Show your work in the space to the right. Get as far as you can.

2. You should get $x = \frac{3 \pm \sqrt{-1}}{2}$ or $x = 1.5 \pm \frac{\sqrt{-1}}{2}$. What is the square root of -1?

Explain.

3. Negative numbers do not have real square roots, but they do have roots that are **imaginary numbers**. The **imaginary unit** *i* is defined as the square root of -1: $i = \sqrt{-1}$ and $i^2 = -1$.

Substituting *i* for $\sqrt{-1}$, what are the roots of $x^2 - 3x + 2.5$?

Gizmo Warm-up

Although imaginary numbers may sound strange, they are useful in several branches of math and science. For example, the roots of some quadratics are **complex numbers** (*z*) that consist of a real part (*a*) and an imaginary part (*bi*): z = a + bi (*a* and *b* are **real numbers**).

The *Points in the Complex Plane* Gizmo allows you to plot complex numbers on a grid called the **complex plane**. Notice that the complex plane has a horizontal **real axis** and a vertical **imaginary axis**.

1. Drag the red point into the origin at the center of the grid. Move the *a* slider back and forth.

What happens to the red point?

2. Return the point to the origin, and move the **b** slider back and forth. How does this affect the

position of the red point?

	Get the Gizmo ready:		2	
Activity A:	• With the red point on the graph, set a and b to 0.			
The complex plane	(To quickly set a slider to a value, type the value into the text box to the right of the slider, and hit	-2		2
-	Enter.)		-2	

- 1. With the red point at the origin, move the *a* slider back and forth. Look on the chart below z = a + bi. The value of the complex number *z* for each point is given on the chart.
 - A. Set **a** to 1. What is the value of *z*?
 - B. Set *a* to –5. What is the value of *z* now?

When b = 0, the number is an ordinary real number and is plotted on the real axis.

- 2. Set **a** to 0 and **b** to 2.
 - A. What is the value of *z*?
 - B. Set b to –8. What is the value of z now? ______

When a = 0 and $b \neq 0$, the number is imaginary and lies on the imaginary axis.

3. Set **a** to 4 and **b** to 7. What is the value of **z**?

When $a \neq 0$ and $b \neq 0$, the number is a complex number of the form z = a + bi.

Н. _____

- Plot the points A–D on the grid to the right. Then write the coordinates of points E–H below, using the *a* + *bi* notation. Use the Gizmo to check your answers.
 - A. 8 + 4i
 E.

 B. -5 2i
 F.

 C. -2 + 7i
 G.
 - D. –3*i*

Activity B:	Get the Gizmo ready:	4
Complex arithmetic	 Remove all points from the grid. Drag the red point to 3 + i and the blue point to 4 + 5i. 	2

- 1. To add complex numbers, just add the real parts and then add the imaginary parts. For example, the sum of 2 + 3i and 4 + 5i is (2 + 4) + (3 + 5)i, or 6 + 8i.
 - A. What is the sum of (3 + *i*) and (4 + 5*i*)?
 - B. Find the sum of -4 + 6*i* and 5 3*i*.
 - C. What is the sum of the two complex numbers graphed to the right? Show your work below.
 - _____+ _____= _____

- 2. The **additive inverse** of a complex number z_1 is a complex number z_2 where $z_1 + z_2 = 0$.
 - A. In the Gizmo, drag the red point to 4 + 5i and a second point to its additive inverse.

What is the additive inverse of 4 + 5*i*?

B. On the grid to the right, plot the additive inverses of points A and B. Label the additive inverses A' and B'.
 How is the position of each additive inverse related to the position of the original point?

- C. In general, how do you find the additive inverse of a complex number?
- 3. Remove all points but the red point, and place the red point at 3 + 5i. Turn on **Show complex conjugates**. The **complex conjugate** (\overline{z}) of a complex number has the same real part and the opposite imaginary part. For example, the conjugate of a + bi is a bi.
 - A. What is the complex conjugate of $3 + 5i? \overline{z} =$ ______
 - B. Move the red point to -3 4*i*. What is the complex conjugate of -3 4*i*?
 - C. Drag the red point around. Where is the complex conjugate located, relative to the

original point?

(Activity B continued on next page)

Activity B (continued from previous page)

4. Multiplying two complex numbers is similar to multiplying binomials. For example, the product of (2 + 3i) and (1 + 4i) is:

$$(2+3i)(1+4i) = (2 \cdot 1) + (2 \cdot 4i) + (3i \cdot 1) + (3i \cdot 4i)$$

= 2+8i+3i+12i²
= 2+11i+12(-1) (Recall that i² = -1)
= 2+11i-12
= -10+11i

Find the following products. Show your work.

(2 + 5i)(3 + i) =(4 - i)(5 + 2i) =

5. An interesting thing happens when you multiply a complex number by its conjugate. Try the following problems. Show your work.

(4 + 2i)(4 - 2i) =

(-1 + 6i)(-1 - 6i) =

What is true about the product of a complex number and its conjugate?

6. Extension: Complex conjugates can help when dividing one complex number by another. For example, consider $(14 + 5i) \div (1 + 4i)$. First, write it as a fraction. Then, simplify by multiplying the numerator and the denominator by the conjugate of the denominator, (1 - 4i).

Complete the calculation to find the quotient. See if you can simplify the answer to a single complex number.

 $\frac{14+5i}{1+4i} \cdot \frac{1-4i}{1-4i} =$