## Vocabulary: Points in the Complex Plane

## Vocabulary

- Additive inverse - a number that, when added to a given number, equals zero.
- For example, the additive inverse of 4 is -4 , because $4+(-4)=0$.
- Complex conjugate - a complex number with the same real part as a given complex number and the opposite imaginary part.
- For example, the complex conjugate $(\bar{z})$ of $(3+2 i)$ is $(3-2 i)$.
- Complex number - a number written as $a+b i$, where $a$ and $b$ are real numbers and $i$ is equal to $\sqrt{-1}$.
- The value $a$ is the real part of a complex number, and bi is the imaginary part.
- For example, the real part of $2+3 i$ is 2 , and the imaginary part is $3 i$.
- Complex plane - a plane that represents the set of complex numbers.
- Like the coordinate plane, the complex plane contains two perpendicular axes, the real axis and the imaginary axis.
- In the complex plane to the right, point A represents the complex number ( $2-3 i$ ) and point $B$ represents $(-3+4 i)$.

- Imaginary unit - the imaginary number, called $i$, that is defined to be equal to $\sqrt{-1}$.
- Imaginary axis - the axis on the complex plane corresponding to the imaginary numbers.
- Imaginary number - any number that can be written in the form $b i$, where $b$ is a real number not equal to zero and $i$ is equal to $\sqrt{-1}$.
- For example, $\sqrt{-16}=\sqrt{16} \cdot \sqrt{-1}=4 i$.
- Quadratic formula - a formula that can be used to find the roots of a quadratic equation of the form $a x^{2}+b x+c=0$.
- The quadratic formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
- Real axis - the axis on the complex plane corresponding to the real numbers.
- Real number - a number that represents a value along a continuous number line.
- The real numbers include zero, all positives and negatives, integers, fractions, decimals, and irrational numbers, but do not include imaginary numbers.

