Name: _____ Date: ____

Student Exploration: Quadratic Inequalities

Vocabulary: boundary, inequality, solution

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
An **inequality** compares two quantities or expressions that are not equal. A **solution** to an inequality makes it true.

1. The graph of y = 0.5x + 1 is shown to the right. Suppose y = 0.5x + 1 is changed to the inequality y < 0.5x + 1. Substitute 1 for x and 0 for y to see if (1, 0) makes y < 0.5x + 1 true. Show your work in the space below.

Does (1, 0) make y < 0.5x + 1 true?

2. Plot (1, 0) on the graph. Where does (1, 0) lie in relationship to the graph of y = 0.5x + 1?

Gizmo Warm-up

When you graph a quadratic inequality like $y < x^2 + x + 1$, the **boundary** (graph of the related quadratic equation) will be a parabola instead of a line. In the *Quadratic Inequalities* Gizmo, you will graph quadratic inequalities to find their solutions.

With **a**, **b**, and **c** set to 1.0, select to graph $y = x^2 + x + 1$. (Change the values of **a**, **b**, and **c** by dragging the sliders, or by clicking in the text field, typing in a value, and hitting **Enter**.)

1. Select ≤ . How does the graph change? _____

2. Select

. How does the graph change?

3. Why is the shaded part of the graph below the parabola when ≤ is selected, and above the parabola when ≥ is selected?

Activity A: Solutions of quadratic

inequalities

Get the Gizmo ready:

- Set **a** to 1.0, **b** to 0.0, and **c** to 0.0.
- Select > .

- 1. The graph shown in the Gizmo should be of $y > x^2$. Sketch the graph of $y > x^2$ on the grid to the right.
 - A. Plot the points (1, 5) and (4, 7) on the graph.
 - B. Substitute 1 for x and 5 for y to see if (1, 5) makes $y > x^2$ true. Show your work below.

Does (1, 5) make $y > x^2$ true?

C. Substitute 4 for x and 7 for y to see if (4, 7) makes $y > x^2$ true. Show your work to the right.

Does (4, 7) make $y > x^2$ true? _____

2. With $y > x^2$ still graphed, select **Show solution test**. Drag the blue point to three places in the shaded area and three places outside the shaded area. Record the coordinates of each point and the values of y and x^2 in the tables below.

Points in the shaded area		
Coordinates	У	x ²

Points outside the shaded area		
Coordinates	У	x ²

- A. What is true about y and x^2 for each point in the shaded area?
- B. What is true about y and x^2 for each point outside the shaded area?
- C. What does the shaded area represent?

(Activity A continued on next page)

Activity A (continued from previous page)

3. With $y > x^2$ still graphed and **Show solution test** selected, drag the blue point to (2, 4).

A. Is (2, 4) a solution to $y > x^2$? _____ Explain. ____

B. Select \geq . Is (2, 4) a solution to $y \geq x^2$? _____ Explain. ____

C. Select \leq . Is (2, 4) a solution to $y \leq x^2$?

D. Select < . Is (2, 4) a solution to $y < x^2$?

E. When do you use a solid boundary?

F. When do you use a dashed boundary?

G. How do you know when to shade below the boundary?

4. Consider the graph of $y < -3x^2 - x + 1$.

A. What is the equation of the boundary of the inequality?

B. Will the boundary be solid or dashed? _____

C. Which side of the boundary do you think will be shaded?

Check your answer in the Gizmo.

5. Determine if each (x, y) point given below is a solution to the inequality $y \ge 2x^2 + x - 2$. Show your work in the space below each problem. Then check your answers in the Gizmo.

A. (1, 6)

B. (-4, -2)

Activity B:

Using quadratic inequalities

Get the Gizmo ready:

• Be sure **Show solution test** is turned on.

1. Graph the following inequalities on the grids below. Then check your graphs in the Gizmo.

A.
$$y \le x^2 + 4x - 3$$

B.
$$y > -4x^2 + 2x + 5$$

- 2. For each item, write an inequality that contains the given point(s) in its solution and has the given boundary. Then graph the inequalities, and check your answers in the Gizmo.
 - A. The point (0, 4) and all points on the boundary $y = x^2 2x + 1$.
- B. The point (-3, 2) and no points on the boundary $y = x^2 4x 3$.

