

Vocabulary: Quadratics in Polynomial Form

Vocabulary

- Axis of symmetry a line that divides a shape into two parts that are mirror images of each other.
 - The axis of symmetry of a parabola goes through the vertex of the parabola.
 - The equation of the axis of symmetry of the graph of $y = ax^2 + bx + c$, where $a \ne 0$, is $x = \frac{-b}{2a}$.

$$x = \frac{-(-2)}{2 \cdot 1} = 1$$

- <u>Parabola</u> the graph of a quadratic function.
 - For example, the graph of $y = x^2 2x 8$ (shown above) is a parabola.
- Quadratic function a function of the form $y = ax^2 + bx + c$, where $a \neq 0$.
 - The " $a \neq 0$ " part is necessary because, if a = 0, the function becomes y = bx + c, which is linear.
 - The graph of a quadratic function is always a parabola.
- Vertex of a parabola the point that is the maximum or minimum of a parabola.
 - The vertex is the *minimum* when the parabola opens up, and it is the *maximum* when the parabola opens down.
 - The vertex always lies on the axis of symmetry.
 - For example, the vertex of $y = x^2 2x 8$ (graph shown above) is (1, -9):

$$y = x^{2} - 2x - 8$$

$$y = (1)^{2} - 2(1) - 8$$

$$= 1 - 2 - 8$$

$$= -9$$