Vocabulary: Quadratics in Polynomial Form

Vocabulary

- Axis of symmetry - a line that divides a shape into two parts that are mirror images of each other.
- The axis of symmetry of a parabola goes through the vertex of the parabola.
- The equation of the axis of symmetry of the graph of $y=a x^{2}+b x+c$, where $a \neq 0$, is $x=\frac{-b}{2 a}$.
- For example, the equation of the axis of symmetry of $y=x^{2}-2 x-8$ (shown to the right) is:

$$
x=\frac{-(-2)}{2 \bullet 1}=1
$$

- Parabola - the graph of a quadratic function.
- For example, the graph of $y=x^{2}-2 x-8$ (shown above) is a parabola.
- Quadratic function - a function of the form $y=a x^{2}+b x+c$, where $a \neq 0$.
- The " $a \neq 0$ " part is necessary because, if $a=0$, the function becomes $y=b x+c$, which is linear.
- The graph of a quadratic function is always a parabola.
- Vertex of a parabola - the point that is the maximum or minimum of a parabola.
- The vertex is the minimum when the parabola opens up, and it is the maximum when the parabola opens down.
- The vertex always lies on the axis of symmetry.
- For example, the vertex of $y=x^{2}-2 x-8$ (graph shown above) is $(1,-9)$:

$$
\begin{aligned}
y & =x^{2}-2 x-8 \\
y & =(1)^{2}-2(1)-8 \\
& =1-2-8 \\
& =-9
\end{aligned}
$$

