Vocabulary: Quadratics in Vertex Form

Vocabulary

- Axis of symmetry - a line that divides a shape into two parts that are mirror images of each other.
- The axis of symmetry of a parabola goes through the vertex of the parabola.
- The equation of the axis of symmetry of the graph of $y=a(x-h)^{2}+k$, where $a \neq 0$, is $x=h$.
- Parabola - the graph of a quadratic function.

- For example, the graph of $y=(x-2)^{2}-1$ is shown above.
- Quadratic function - a function in which y depends on the square of x.
- The polynomial form of a quadratic function is $y=a x^{2}+b x+c$ and the vertex form is $y=a\left(x^{2}-h\right)+k$, where $a \neq 0$.
- The graph of a quadratic function is always a parabola.
- Vertex form of a quadratic function - a function of the form $y=a\left(x^{2}-h\right)+k$, where $a \neq 0$.
- Vertex of a parabola - the point that is the maximum or minimum of a parabola.
- The vertex is the minimum when the parabola opens up, and it is the maximum when the parabola opens down.
- The vertex always lies on the axis of symmetry.
- $\quad x$-intercept - the x-coordinate where a graph intersects the x-axis.
- For example, the x-intercepts of the graph above are 1 and 3 .
- y-intercept - the y-coordinate where a graph intersects the y-axis.
- For example, the y-intercept of the graph above is 3 .

