Vocabulary: Roots of a Quadratic

Vocabulary

- Axis of symmetry - a line that divides a shape into two parts that are mirror images of each other.
- The axis of symmetry of a parabola goes through the vertex of the parabola.
- The equation of the axis of symmetry of the graph of $y=a x^{2}+b x+c$, where $a \neq 0$, is $x=\frac{-b}{2 a}$.

- Complex number - a number written as $a+b i$, where a and b are real numbers and i is the square root of -1 .
- The value a is the real part of a complex number, and $b i$ is the imaginary part.
- For example, the real part of $2+3 i$ is 2 , and the imaginary part is $3 i$.
- Conjugates - a pair of binomials with the same first term and opposite second terms.
- For example, $2+3 i$ and $2-3 i$ are conjugates.
- Discriminant - the part of the quadratic formula that is under the radical, $b^{2}-4 a c$.
- Imaginary number - any number that can be written in the form $b i$, where b is a real number not equal to zero and i is the square root of -1 .
- For example, $\sqrt{-16}=\sqrt{16} \cdot \sqrt{-1}=4 i$.
- Parabola - the graph of a quadratic function.
- For example, the graph of $y=x^{2}-2 x-8$ (shown above) is a parabola.
- Quadratic equation - an equation of the form $a x^{2}+b x+c=0$, where $a \neq 0$.
- Quadratic formula - a formula that can be used to find the roots of a quadratic equation of the form $a x^{2}+b x+c=0$.
- The quadratic formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
- Quadratic function - a function of the form $y=a x^{2}+b x+c$, where $a \neq 0$.
- The "a" cannot be 0 because, if $a=0$, the function becomes linear: $y=b x+c$.
- The graph of a quadratic function is always a parabola.
- \quad Root of an equation - a quantity that makes the related function equal to 0 .

