

Name: ____

Date:

Student Exploration: Rotations, Reflections, and Translations

Vocabulary: image, preimage, reflection, rotation, transformation, translation

Prior Knowledge Questions (Do these BEFORE using the Gizmo.) Little Johnnie is playing with a puzzle piece shaped like the letter "b." He is surprised to discover he can make other letters with the same piece.

- 1. If he flips the "b" over to the left, what new letter is formed? ______ Draw a picture to the right.
- If he flips the letter you drew above down, what new letter is formed? ______
 Draw a picture to the right.
- 3. Little Johnnie puts the "b" back in its original position. Then he rotates it 90°

clockwise. Draw the result to the right. Is this a letter?

Gizmo Warm-up

The manipulations of the letter "b" are examples of different **transformations** – **rotations** (turns), **reflections** (flips), and **translations** (slides). In the *Rotations, Reflections, and Translations* Gizmo[™], you will rotate, reflect, and translate various figures on a coordinate plane. To begin, select **Segment** from the **Figure type** menu and **Rotate around Origin** from the **Operation** menu.

1. Drag the **Rotation (in degrees)** slider. What happens to \overline{EF} ?

In all of the transformations in this Gizmo,	EF is the	image and	\overline{AB} is the	preimage.

2. Select **Reflect over x-axis**. Drag points A and B so they are both above the x-axis. What do

you notice about EF?

3. Select Translate. Drag the x translation and y translation sliders. What happens to EF?

10

Activity A:	Get the Gizmo ready:	10
Translations	 Under Figure type, select Point. Under Operation, select Translate. 	A 10

- 1. Recall that point *A* is the preimage, and point *E* is the translated image of point *A*.
 - A. With the *y* translation slider set to 0, drag the *x* translation slider. How does this

affect point E?

B. Now set the *x* translation slider to 0 and drag the *y* translation slider. How does

this affect point E? _____

C. Set both translation sliders to a positive value. Drag point A around. How does this

affect point E?

- 2. Turn on **Show table**. Set *x* translation to -5 and *y* translation to 6. Drag point *A* to (-2, 3).
 - A. What are the coordinates of point *E*? (_____, ____)
 - B. How can you calculate the coordinates of point *E*?
 - C. Suppose a point has coordinates (x, y). What are the coordinates of the image if the

x translation is a and the y translation is b? (_____, ____)

3. The endpoints of \overline{AB} are at A(-5, 6) and B(4, 0). Predict the endpoints of the image \overline{EF} for the translations listed in the table below. Then sketch \overline{AB} and each image on the grid. Click on **Show table** to check your answers.

<i>x</i> and <i>y</i> translation	Point <i>E</i> Image of <i>A</i> (–5, 6)	Point F Image of <i>B</i> (4, 0)		8	y			
<i>x</i> translation: 3 <i>y</i> translation: 0				4				
<i>x</i> translation: –1 <i>y</i> translation: –5			-8 -6 -	4 -2 -2	2	4	6	8
<i>x</i> translation: 1 <i>y</i> translation: –6				-4 -6 -8				

	Get the Gizmo ready:	A
Activity B: Reflections	 Under Figure type, select Point. Under Operation, select Reflect over x-axis. Turn off Show table. 	10 (E)

- 1. Recall that point *E* (the image) is the reflection of point *A* (the preimage).
 - A. Drag point A up, down, left, and right. Fill in the table to describe how point E moves when you do this.

Point A	Up	Down	Left	Right
Point E				

- B. Turn on **Show table**. Watch the coordinates in the table as you drag point A around. How do the coordinates of point E compare to the coordinates of point A?
- C. A point has coordinates (x, y). What are the coordinates of the image if (x, y) is

reflected over the x-axis? (_____, ____)

- 2. Turn off Show table. Select Reflect over y-axis.
 - A. What do you think will happen to point *E* when point *A* is moved to the right?
 - B. Turn on **Show table**. How do the coordinates of point *E* compare to those of point *A*?
 - C. A point has coordinates (x, y). What are the coordinates of the image if (x, y) is

reflected over the y-axis? (_____, ____)

3. Under Operation, select None. Under Figure type, select Triangle. Drag the vertices of $\triangle ABC$ to A(7, 5), B(-10, 2), and C(2, -8). Predict the coordinates of the vertices of the image ΔEFG for the reflections listed below. Then check your answers in the Gizmo.

Over the x-axis: E(_)	F()	G(,)
Over the <i>v</i> -axis: <i>E</i> ()	F()	G()

	Get the Gizmo ready:	10
Activity C: Rotations	Under Figure type, select Point.	۵
Notations	 Turn off Show table. 	E 10

- 1. Drag point *A*, the preimage, to (10, 5).
 - A. Drag the Rotation (in degrees) slider. What shape does point E, the image of A,

trace as you drag the slider to the right?

B. Does point *E* move in a clockwise or counterclockwise direction when you drag the

slider to the right?

C.	C. Give the angle of rotation that places point <i>E</i> at the coordinates listed in the table to the right. Click on Show table to check your answers.	Point E Image of A(10, 5)	Angle of rotation
		(–5, 10)	
D.	What angle of rotation brings point <i>E</i> back to	(–10, –5)	
	point A?	(5, –10)	

- 2. Turn off Show table. Select Segment under Figure type. Set Rotation (in degrees) to 0°. Place the endpoints of \overline{AB} at A(-1, 10) and B(8, -3).
 - A. Predict the endpoints of the image \overline{EF} for each angle of rotation listed in the table below. Click on **Show table** to check your answers.

Angle of rotation	0°	90°	180°	270°	360°
Point <i>E</i> Image of <i>A</i> (–1, 10)					
Point <i>F</i> Image of <i>B</i> (8, –3)					

B. Based on the patterns you have observed, write the general coordinates of the image of a point with coordinates (x, y) in the table below.

Angle of rotation	0°	90°	180°	270°	360°
Coordinates of image of (<i>x</i> , <i>y</i>)					

(Activity C continued on next page)

Activity C (continued from previous page)

3. Suppose $\triangle ABC$ has the vertices listed below. Write the coordinates of the vertices of image $\triangle EFG$ for a 270° rotation in the table. Sketch both triangles on the grid to the right. Then check your answers in the Gizmo.

Vertices of ∆ <i>AB</i> C	Vertices of ∆ <i>EF</i> G
A(2, 3)	
<i>B</i> (–5, 1)	
<i>C</i> (4, –6)	

- 4. <u>Extension</u>: Select **Point** under **Figure type** and **Rotate around Origin** under **Operation**. Be sure **Show table** is turned on.
 - A. You can use the cosine (cos) and sine (sin) of the angle of rotation to find the image of any point on the positive *x*-axis. To see how this works, first use a calculator to find the cosine and sine (to the nearest hundredth) of the angles in the table below.

Angle of rotation (θ)	cos θ	sin θ	Point E Image of A(10, 0)
30°			
45°			
60°			
90°			

- B. Drag point A to (10, 0). Find the coordinates of the image point E for each angle of rotation listed above. Write the coordinates of point E in the last column of the table.
- C. Compare the cosine and sine for each angle to the coordinates of point E. What do

you notice?

Experiment with other points on the positive x-axis and other angles to verify.

D. The point (x, 0) is rotated through an angle of θ when x > 0. Based on the patterns you have observed, use cosine (cos) and sine (sin) to write a formula for the coordinates of the image.

(______, _____)