Vocabulary: Simplifying Trigonometric Expressions

Vocabulary

- Identity - an equation that is true for all values.
- A trigonometric identity is an equation involving trigonometric functions that is true for all possible angles.
- The Pythagorean identities are:
- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- $1+\tan ^{2} \theta=\sec ^{2} \theta$
- $1+\cot ^{2} \theta=\csc ^{2} \theta$
- The reciprocal identities are:
- $\sin \theta=\frac{1}{\csc \theta} \quad \cos \theta=\frac{1}{\sec \theta} \quad \tan \theta=\frac{1}{\cot \theta}$
- $\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
- Trigonometric function - a function of an angle that relates the angles of a triangle to the lengths of its sides.
- There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant.
- The values of the trigonometric functions are determined by the point where an angle (θ) in standard position, placed on a unit circle, intersects the circle. In the diagram below, that point is labeled $P(x, y)$.
- The sine of $\theta(\sin \theta)$ is the y-value of the point (x, y). So, in the diagram, $\sin \theta=y$.
- The cosine of $\theta(\cos \theta)$ is the x-value of the point (x, y). So, in the diagram, $\cos \theta=x$.
- The tangent of $\theta(\tan \theta)$ is the ratio of the sine to the cosine. So, $\tan \theta=\frac{\sin \theta}{\cos \theta}$.
- The cotangent $(\cot \theta)$, cosecant $(\csc \theta)$, and secant $(\sec \theta)$ are reciprocals of the other
 functions.

$$
\cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta} \quad \csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta}
$$

