Vocabulary: Simplifying Trigonometric Expressions

🔟 Vocabulary

Gizmos

- <u>Identity</u> an equation that is true for all values.
 - A trigonometric identity is an equation involving trigonometric functions that is true for all possible angles.
 - The Pythagorean identities are:
 - $\sin^2 \theta + \cos^2 \theta = 1$
 - $1 + \tan^2 \theta = \sec^2 \theta$
 - $1 + \cot^2 \theta = \csc^2 \theta$
 - The reciprocal identities are:

•
$$\sin \theta = \frac{1}{\csc \theta}$$
 $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$
• $\csc \theta = \frac{1}{\sin \theta}$ $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

- <u>Trigonometric function</u> a function of an angle that relates the angles of a triangle to the lengths of its sides.
 - There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant.
 - The values of the trigonometric functions are determined by the point where an angle (θ) in standard position, placed on a unit circle, intersects the circle. In the diagram below, that point is labeled P(x, y).
 - The sine of θ (sin θ) is the *y*-value of the point (*x*, *y*). So, in the diagram, sin $\theta = y$.
 - The cosine of θ (cos θ) is the *x*-value of the point (*x*, *y*). So, in the diagram, cos $\theta = x$.
 - The tangent of θ (tan θ) is the ratio of the sine to the cosine. So, tan $\theta = \frac{\sin \theta}{\cos \theta}$.
 - The cotangent (cot θ), cosecant (csc θ), and secant (sec θ) are reciprocals of the other functions.

$$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} \qquad \csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta}$$

