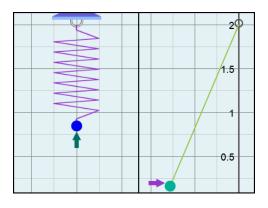


Name:	Date:

Student Exploration: Simple Harmonic Motion

Vocabulary: controlled experiment, harmonic motion, oscillation, pendulum, period, spring, spring constant


Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

- 1. A bungee jumper launches herself off a bridge. How would you describe her motion?
- 2. A child goes to the playground and gets on a swing. How would you describe his motion?
- 3. What do the motions of the bungee jumper and swinger have in common? ______

Gizmo Warm-up

Harmonic motion is repeating back-and-forth or upand-down movement. The *Simple Harmonic Motion* Gizmo allows you compare the harmonic motions of a **spring** and a **pendulum**.

To begin, open the **TOOLS** tab on the bottom right and drag one arrow to the bottom of the spring so that the weight just touches the tip of the arrow, as shown. Drag a second arrow so that the pendulum just touches the tip of the arrow when it swings to the left.

- 1. When the spring touches the arrow, click the green button on the stopwatch. Count the movements, or **oscillations**. Click the green button again after the tenth oscillation.
 - A. What is the time for 10 oscillations of the spring? _____
 - B. Divide this time by 10 to find the **period** of the spring:
- 2. Click the red button to reset the stopwatch. Use the same procedure on the pendulum.

What is the period of the pendulum? _____

Activity A:	Get the Gizmo ready:	
Period of a spring	 Click the red button to reset the stopwatch. 	

Introduction: The **spring constant** is a measure of the stiffness of a spring. The greater the spring constant, the harder it is to stretch or compress the spring. The *Simple Harmonic Motion* Gizmo allows you to manipulate the mass on the end of the spring (m), the spring constant (k), and the gravitational acceleration (g).

Question: Which factors affect the period of a spring?

1.	<u>Predict</u> : Which factors do you think will increase or decrease the period of a spring? Which do you think will have no effect on the period of a spring?

2. <u>Gather data</u>: In a **controlled experiment**, only one factor changes at a time. Controlled experiments are a fair way to compare the effects of each variable on a system.

For each of the combinations given in the table below, measure the time for 10 oscillations of the spring and calculate the period. If necessary, reduce the **Sim. speed** to improve your accuracy.

m (kg)	k (N/m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)
0.5 kg	100 N/m	9.8 m/s ²		
2.0 kg	100 N/m	9.8 m/s ²		
m (kg)	k (N/m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)
1.0 kg	50 N/m	9.8 m/s ²		
1.0 kg	200 N/m	9.8 m/s ²		
m (kg)	k (N/m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)
1.0 kg	100 N/m	5.0 m/s ²		
1.0 kg	100 N/m	20.0 m/s ²		

	3.	Analyze:	Examine	the	results	of each	experimen
--	----	----------	---------	-----	---------	---------	-----------

A.	Which factors affected the period of	the spring?
----	--------------------------------------	-------------

B. Which factor had no effect on the period? _____

C. What is the effect of quadrupling the mass? ______

D. What is the effect of quadrupling the spring constant? _____

Activity B:

Period of a pendulum

Get the Gizmo ready:

Reset the stopwatch.

Set L to 1.0 m and g to 9.8 m/s².

Introduction: The *Simple Harmonic Motion* Gizmo allows you to manipulate three variables for the pendulum: its mass (m), its length (L), and the gravitational acceleration (g).

Question: Which factors affect the period of a pendulum?

1.	Which do you think will have no effect at all?

2. <u>Gather data</u>: For each of the combinations given in the table below, measure the time for 10 oscillations of the pendulum and calculate the period. If necessary, change the **Sim. speed** to improve the accuracy of your measurements.

m (kg)	<i>L</i> (m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)
0.5 kg	1.0 m	9.8 m/s ²		
2.0 kg	1.0 m	9.8 m/s ²		
m (kg)	<i>L</i> (m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)
1.0 kg	0.5 m	9.8 m/s ²		
1.0 kg	2.0 m	9.8 m/s ²		
m (kg)	<i>L</i> (m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)
1.0 kg	1.0 m	5.0 m/s ²		
1.0 kg	1.0 m	20.0 m/s ²		

2	Analyza:	Evamina	the reculte	of bach	experiment.
J.	Allalyze.		tile results	or Cacii	experiment.

A.	Which factors affected the	period of the pendulum?	
----	----------------------------	-------------------------	--

Activity C:	Get the Gizmo ready:	
Calculating periods	 Reset the stopwatch. Set g to 9.8 m/s². 	01.35

Introduction: In activity A, you found that the period of a spring depends only on its mass and the spring constant. In activity B, you found that the period of a pendulum depends on its length and gravitational acceleration. Now, you will determine formulas for the period of each object.

Question: How are the periods of pendulums and springs calculated?

1.	Summarize:	Look at	t your	results	from	prior	activities.	
----	------------	---------	--------	---------	------	-------	-------------	--

- A. How did quadrupling *m* affect the period of the spring? _____
- B. How did quadrupling *k* affect the period of the spring?
- C. How did quadrupling *L* affect the period of the pendulum?
- D. How did quadrupling *g* affect the period of the pendulum? _____
- 2. <u>Gather data</u>: Use the Gizmo to find the period of the spring for three sets of **m** and **k** values. Then find the period of the pendulum for three sets of **L** and **g** values.

Spring

m (kg)	<i>k</i> (N/m)	Time for 10 oscillations (s)	Period (s)	$\frac{m}{k}$	$\sqrt{\frac{m}{k}}$	$\frac{Period}{\sqrt{\frac{m}{k}}}$

Pendulum

<i>L</i> (m)	g (m/s²)	Time for 10 oscillations (s)	Period (s)	$\frac{L}{g}$	$\sqrt{\frac{L}{g}}$	$\frac{Period}{\sqrt{\frac{L}{g}}}$

3. Calculate: Calculate the ratios listed in the last three columns of each table.

(Activity C continued on next page)

Activity C (continued from previous page)

- 4. Analyze: Examine your data tables.
 - A. No matter what values of *m* and *k* you used for the spring, what is the ratio of the

period to
$$\sqrt{\frac{m}{k}}$$
 ? _____

B. No matter what values of L and g you used for the pendulum, what is the ratio of the

period to
$$\sqrt{\frac{L}{g}}$$
?

5. Challenge: Put together what you learned in this activity to come up with formulas for the period (T) of a spring based on its mass (m) and spring constant (k) and for the period of a pendulum based on its length (L) and gravitational acceleration (g).

$$T_{Spring} =$$

$$T_{Pendulum} =$$

Have your teacher check your formulas when they are complete.

- 6. Apply: How long would a pendulum on Earth (where $g = 9.8 \text{ m/s}^2$) have to be to have the same period as a spring with a mass of 10.0 kg and a spring constant of 25 N/m?
- 7. <u>Think and discuss</u>: Which is more likely to keep accurate time on the Moon, a spring-driven watch or a pendulum clock? Explain your answer.