

Name:

Date:

Student Exploration: Solving Linear Inequalities in One Variable

Vocabulary: boundary point, inequality, solution

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. Larry has at least 3 more books than Pat. If Pat has 6 books, what do you know about the

number of books Larry has?

- 2. Suppose Larry has 16 books and Pat has *x* books. (Larry still has at least 3 more than Pat.)
 - A. Use $<, \leq, >$, or \geq to write an **inequality** to compare the number of books Larry has to

the number of books Pat has.

B. What do you know about the number of books Pat has? ______

Gizmo Overview

In the Solving Linear Inequalities in One Variable Gizmo, you will be given inequalities like $x + 3 \le 16$ and find their **solutions**, the values that make the inequalities true.

Here's how the Gizmo works:

The graph of your solution will be shown on this number line.

After your have solved the inequality correctly, click **New** for a new inequality to solve.

Activity A:	A: Get the Gizmo ready:	
Solutions to inequalities	 You should see the inequality x + 5 > 2. If not, click Refresh in your browser. 	x + 5 > 2

- 1. In this question, you will solve the inequality x + 5 > 2.
 - A. What do you have to do to each side to solve *x* + 5 > 2?
 - B. Solve x + 5 > 2 for x. Show your work to the right.

Set *a* to the number in your solution and select > . (To quickly set the value of a slider, type the number into the text box to the right of the slider and press **Enter**.) Sketch your solution below. Select **Show solution** to check your work.

		i.	i.	i.	1	1	1	1	- i	
-					-	-	-	-		-
	-4	-3	-2	-1	0	1	2	3	4	

C. The open point on the number line is the **boundary point** of the graph. Is the

- 2. Click **New**. You should see the inequality $x 4 \le -3$.
 - A. What do you have to do to each side to solve $x 4 \le -3?$
 - B. Solve $x 4 \le -3$. Show your work to the right. Graph your solution in the Gizmo and sketch the graph below. Select **Show solution** to check your work.

- 3. Click **New**. You should see the inequality 5x < 20.
 - A. What do you have to do to each side to solve 5x < 20?
 - B. Solve 5x < 20. Show your work to the right. Graph your solution in the Gizmo and sketch the graph below. Select **Show solution** to check your work.

(Activity A continued on next page)

Activity A (continued from previous page)

- 4. So far, you have solved inequalities in the same way you solve equations. However, an interesting thing happens when the coefficient of *x* is negative. Before doing the next problem in the Gizmo, consider the inequality -x < -2.
 - A. Fill in the table for the values of x shown. What values of x make -x < -2 true?

x	-x	ls − <i>x</i> < −2 true?
1		
2		
3		
4		
5		

- B. Write an inequality to describe the values of x that make -x < -2 true.
- C. Look at the inequality signs in -x < -2 and in the inequality you wrote above.

What do you notice?

- 5. Click **New**. You should see $\frac{x}{-4} \ge -1$.
 - A. Rewrite $\frac{x}{-4} \ge -1$ so the negative sign in the fraction is with x.
 - B. Multiply each side by 4. What inequality do you get?
 - C. If –x is greater than or equal to –4, then what must be true about x?

Test several values of *x* to check your answer.

D. You can also solve $\frac{x}{-4} \ge -1$ by multiplying each side by -4. What do you think will

happen to the "≥" sign when you multiply each side by –4? _____

E. Solve $\frac{x}{-4} \ge -1$. Show your work to the right. Graph your solution in the Gizmo and sketch the graph

below. Select Show solution to check your work.

-4 -3 -2 -1 0 1 2 3 4

6. Click **New**. Work through more problems in the Gizmo. Be sure to practice solving a variety of inequalities, including several in which *x* is multiplied or divided by a negative number.

In general, what happens to the inequality sign when you multiply or divide each side of an

inequality by a negative number?

Activity B:	Get the Gizmo ready:	
Solving inequalities	 Click New if you need more practice solving inequalities. 	-4 -3 -2

Solve each inequality. Show your work in the space below each problem. Then graph the solution on the number line.

1.
$$x + 9 < 12$$
 4. $-5x > -20$

2. $x - 6 \ge 1$

8

6