Vocabulary: Torque and Moment of Inertia

Vocabulary

Gizmos

- <u>Angular acceleration</u> the rate of change in the angular velocity of a rotating object.
 - The symbol for angular acceleration is α (alpha).
 - The angular velocity (ω) of an object is equal to the angle through which it rotates in a given time. Units of angular velocity may be degrees per second (°/s) or radians per second (rad/s).
 - To find the angular acceleration, divide the change in angular velocity ($\Delta \omega$) by the elapsed time (Δt): $\alpha = \Delta \omega / \Delta t$.
- <u>Fulcrum</u> the pivot point of a *lever*.
- <u>Lever</u> a simple machine made of a stiff plank or bar that pivots on a fulcrum.

- A see-saw is an example of a *first-class lever*, which is a lever with the fulcrum between the effort and the load.
- <u>Moment of inertia</u> resistance to change in angular velocity.
 - The symbol for moment of inertia is *I*.
 - An object's moment of inertia depends on its mass and how the mass is distributed around the center of rotation.
 - For a point with mass *m* and distance *r* from the center of rotation, the moment of inertia is given by the formula: $I = mr^2$.
- <u>Newton's second law</u> the force acting on an object is equal to the product of its mass and acceleration: F = ma.
 - The greater the force on an object, the greater its acceleration.
 - o If you add mass to an object, it will accelerate less rapidly under a given force.
 - For a rotating body, Newton's second law states that *torque* (τ) is equal to the product of moment of inertia (I) and angular acceleration (α): $\tau = I\alpha$.
- <u>Torque</u> a twisting force that causes rotation.
 - The symbol for torque is τ (tau).
- <u>Weight</u> the downward force of gravity on an object.
 - To calculate weight (w), multiply mass (m) by gravitational acceleration (g):

w = mg

• On Earth's surface, g is equal to 9.81 m/s².