Vocabulary: Unit Conversions 2 Scientific Notation and Significant Digits

Vocabulary

- Resolution - a measure of the fineness with which an instrument can make a measurement.
- A stopwatch that records time to the nearest hundredth of a second has greater resolution than a stopwatch that records time to the nearest tenth of a second.
- Scientific notation - a convenient method of writing very large or very small numbers.
- A number in scientific notation consists of a number between 1 and 10 multiplied by a power of 10 .
- For example, $41,600,000$ in scientific notation is 4.16×10^{7}.
- Significant digits - digits in a measured value that were directly measured or estimated.
- A measurement should be recorded with a number of significant digits that reflects the resolution of the instrument.
- Use the following rules to determine the number of significant digits in a measured value:

1. Any non-zero digit is significant: 227.4 has four significant digits.
2. Any digit that is between other significant digits is significant: 200.08 has five significant digits.
3. Zeros to the right of a significant digit and to the right of a decimal point are always significant: $\underline{6} . \underline{00}$ has three significant digits.
4. Zeros used to space a number to the right of a decimal point are not significant: 0.000147 has only three significant digits.
5. In scientific notation, all digits in the coefficient are significant: $8 . \underline{75} \times 10^{5}$ has 3 significant digits.
6. Zeros to the right of a significant digit but to the left of a decimal point may or may not be significant: $\underline{875,000}$ has at least three significant digits, but may have as many as six.
7. If a number ends in a decimal point, the zeros to the left of the decimal point are significant: 875,000 . has six significant digits.
8. In any calculation, the number of significant digits in the answer should equal the number of significant digits in the measurement with the least number of significant digits: $2.13 \mathrm{~cm} \times 4.1 \mathrm{~cm}$ should have two significant digits because 4.1 has two significant digits: $2.13 \mathrm{~cm} \times 4.1 \mathrm{~cm}=8.7 \mathrm{~cm}^{2}$.
