Name: \qquad Date: \qquad

Student Exploration: Zap It! Game

Vocabulary: parabola, quadratic function

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
The equation of the line shown is $y=2 x+3$.

1. If you wanted the line to intersect more points, how would you change the slope of the line? \qquad
2. How would you change the y-intercept? \qquad

Gizmo Warm-up

In the Zap It! Gizmo, you will see how many points you can hit (or "zap") with a parabola by changing the values in a quadratic function. You can choose polynomial form, $y=$ $a x^{2}+b x+c$, or vertex form, $y=a(x-h)^{2}+k$.

With Polynomial form selected, be sure that the sliders are set to the default values: \boldsymbol{a} to $1, \boldsymbol{b}$ to 0 , and \boldsymbol{c} to 0 . (To quickly set a slider to a value, type the value in the box to the right of the slider and press Enter.)

1. Click Reset - random points. Then click Graph it! to graph $y=x^{2}$. The "zapped" points are in red.

A. How many points did this curve "zap"? \qquad
B. How do you need to change the parabola to zap more points? \qquad
\qquad
2. Click Keep trying. Drag the sliders, and click Graph it! How many did you zap now? \qquad
Keep trying! The goal is to zap as many points as you can, in as few attempts as possible.
To start a new game, click either Reset - random points or Reset - perfect fit.

Activity A: Polynomial form	Get the Gizmo ready:	-
	- Be sure Polynomial form is selected. - Click Reset - random points.	\because

1. Play the "Random points" game several times. Record how many points you zap each time.

Game	Attempt 1	Attempt 2	Attempt 3	Attempt 4	Attempt 5	Most zapped
1						
2						
3						
4						

2. Click Reset - perfect fit. In this game, you can actually zap all 10 points. The challenge is, how many tries will it take you to zap all 10? (Note: The points in the Gizmo are "fat" so there are several different graphs that will zap all 10 points.)

Game 1: It took \qquad attempts to zap all 10 points.

Game 2: It took \qquad attempts to zap all 10 points.

Game 3: It took \qquad attempts to zap all 10 points.

Game 4: It took \qquad attempts to zap all 10 points.

Play the "perfect fit" game several more times, in Polynomial form mode. What's your best score (fewest attempts to zap all 10 points)? \qquad
3. The parabola graphed here is $y=x^{2}(a=1, b=0$, and $c=0)$. How would you change the values in $y=a x^{2}+b x+c$ to zap more points? Explain why.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. Play the "Random points" game several times. Record how many points you zap each time.

Game	Attempt 1	Attempt 2	Attempt 3	Attempt 4	Attempt 5	Most zapped
1						
2						
3						
4						

4. Click Reset - perfect fit. In this game, you can actually zap all 10 points. The challenge is, how many tries will it take you to zap all 10? (Note: The points in the Gizmo are "fat" so there are several different graphs that will zap all 10 points.)

Game 1: It took \qquad attempts to zap all 10 points.

Game 2: It took \qquad attempts to zap all 10 points.

Game 3: It took \qquad attempts to zap all 10 points.

Game 4: It took \qquad attempts to zap all 10 points.

Play the "perfect fit" game several more times, in Vertex form mode. What's your best score (fewest attempts to zap all 10 points)? \qquad
2. The parabola graphed here is $y=x^{2}(a=1, h=0$, and $k=0)$. How would you change the values in $y=a(x-h)^{2}+k$ to zap more points? Explain why.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

