

Name:	Date:

Student Exploration: Zap It! Game

Vocabulary: parabola, quadratic function

Prior Knowledge Questions (Do these BEFORE using the Gizmo.) The equation of the line shown is y = 2x + 3.

1. If you wanted the line to intersect more points, how would you

change the slope of the line? _____

2. How would you change the *y*-intercept? _____

Gizmo Warm-up

In the Zap It! Gizmo, you will see how many points you can hit (or "zap") with a **parabola** by changing the values in a **quadratic function**. You can choose polynomial form, $y = ax^2 + bx + c$, or vertex form, $y = a(x - h)^2 + k$.

With **Polynomial form** selected, be sure that the sliders are set to the default values: \boldsymbol{a} to 1, \boldsymbol{b} to 0, and \boldsymbol{c} to 0. (To quickly set a slider to a value, type the value in the box to the right of the slider and press **Enter**.)

1. Click **Reset – random points**. Then click **Graph it!** to graph $y = x^2$. The "zapped" points are in red.

-

B. How do you need to change the parabola to zap more points? _____

Click Keep trying. Drag the sliders, and click Graph it! How many did you zap now? _____
Keep trying! The goal is to zap as many points as you can, in as few attempts as possible.
To start a new game, click either Reset – random points or Reset – perfect fit.

Activity A:

Polynomial form

Get the Gizmo ready:

- Be sure **Polynomial form** is selected.
- Click Reset random points.

1. Play the "Random points" game several times. Record how many points you zap each time.

Game	Attempt 1	Attempt 2	Attempt 3	Attempt 4	Attempt 5	Most zapped
1						
2						
3						
4						

2. Click **Reset – perfect fit**. In this game, you can actually zap all 10 points. The challenge is, how many tries will it take you to zap all 10? (Note: The points in the Gizmo are "fat" so there are several different graphs that will zap all 10 points.)

Game 1: It took _____ attempts to zap all 10 points.

Game 2: It took _____ attempts to zap all 10 points.

Game 3: It took _____ attempts to zap all 10 points.

Game 4: It took _____ attempts to zap all 10 points.

Play the "perfect fit" game several more times, in **Polynomial form** mode. What's your best score (fewest attempts to zap all 10 points)?

3. The parabola graphed here is $y = x^2$ (a = 1, b = 0, and c = 0). How would you change the values in $y = ax^2 + bx + c$ to zap more points? Explain why.

Activity B: Vertex form Get the Gizmo ready:

- Select Vertex form.
- Click Reset random points.

1. Play the "Random points" game several times. Record how many points you zap each time.

Game	Attempt 1	Attempt 2	Attempt 3	Attempt 4	Attempt 5	Most zapped
1						
2						
3						
4						

4. Click **Reset – perfect fit**. In this game, you can actually zap all 10 points. The challenge is, how many tries will it take you to zap all 10? (Note: The points in the Gizmo are "fat" so there are several different graphs that will zap all 10 points.)

Game 1: It took _____ attempts to zap all 10 points.

Game 2: It took _____ attempts to zap all 10 points.

Game 3: It took _____ attempts to zap all 10 points.

Game 4: It took _____ attempts to zap all 10 points.

Play the "perfect fit" game several more times, in **Vertex form** mode. What's your best score (fewest attempts to zap all 10 points)? _____

2. The parabola graphed here is $y = x^2$ (a = 1, h = 0, and k = 0). How would you change the values in $y = a(x - h)^2 + k$ to zap more points? Explain why.

