

Name:

Date: _____

Student Exploration: Cosine Function

Vocabulary: cosine, even function, period, radian, reference triangle, trigonometric function, unit circle

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

- $\cos(\theta) = \frac{au_{1}}{hypotenuse}$ 1. The **cosine** of angle θ of a right triangle is the length of the adjacent leg divided by the hypotenuse. The hypotenuse of the right triangle to the right is 5 units, and the legs have lengths of 3 units and 4 units. What is the cosine of angle θ ? $\cos(\theta) =$ (x, y)2. A circle has its center at the origin of a coordinate plane. A right triangle is placed in the circle as shown to the right. A. What is $cos(\theta)$? $\cos(\theta) =$ B. What is $cos(\theta)$ if r = 1? $cos(\theta) =$ _____ Gizmo Warm-up The cosine function $y = \cos(\theta)$ is a **trigonometric function**. When θ has its vertex at the center of a circle, it is in standard position and $\cos(\theta)$ is the x-value of the point where θ intersects the circle. In the Cosine Function Gizmo, you will explore $y = \cos(\theta)$ and its graph.
- 1. On the **COSINE** tab, turn on **Show reference triangle**. Then, with **Degrees** selected, drag the slider slowly from 0° to 180°.
 - A. What happens to the value of $cos(\theta)$ as θ goes from 0° to 180°?

B. When does the maximum value of $\cos(\theta)$ occur?

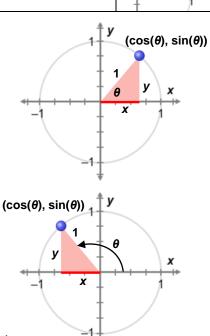
2. Explain why the behavior of $cos(\theta)$ from 0° to 180° makes sense, based on the unit circle.

Activity A:Get the Gizmo ready:The basics of cosineOn the COSINE tab, be sure Degrees and Show reference triangle are selected. • Set θ to 0°.	
--	--

The circle shown in the Gizmo has a radius of 1, so it is a **unit circle**. Angle θ is formed by a radius of the circle and the positive *x*-axis. The cosine of θ is the *x*-value of the corresponding point on the unit circle.

The right triangle formed by the perpendicular segment drawn from the terminal ray of θ to the *x*-axis is called a **reference triangle**.

- 1. Set θ to 0°, so the blue point is at (1, 0). (To quickly set θ to a specific value, type the value in the text box, and hit **Enter**.) Then drag the point counterclockwise around the circle once.
 - A. When is cos(θ) positive?
 - B. When is cos(θ) negative? _____
 - C. Explain why that makes sense, based on the unit circle.



D. Describe how the *x*-coordinate changes in one full rotation around the circle.

E. What do you think will happen to the value of $\cos(\theta)$ if you keep dragging the point

around the circle?

Why? _____

Check your answer in the Gizmo.

F. How often do the values of the cosine function repeat?

This is called the **period** of the cosine function. A function that repeats in regular intervals like this is *periodic*.

(Activity A continued on next page)

Activity A (continued from previous page)

- 2. Set θ to 180°. Notice that $\cos(180^\circ) = -1$.
 - A. List three angles greater than 180° with a cosine of -1.
 B. List three angles less than 180° with a cosine of -1.
 - C. Justify your answers above.
 - D. Drag the point on the unit circle to check your answers above. Then fill in the blanks.

 $\cos(180^\circ) = \cos(180^\circ + __]) = \cos(180^\circ + __]) = \cos(180^\circ + __])$ $\cos(180^\circ) = \cos(180^\circ -]) = \cos(180^\circ -]) = \cos(180^\circ -])$

E. In the Gizmo, check that this relationship is true for angles other than 180°. Then fill

in the blank to generalize this relationship.

 $\cos(\theta) = \cos(\theta \pm (\underline{n})^{\circ})$

F. The cosine function is $y = \cos(\theta)$. This means that, when you graph it, θ goes on the *x*-axis and $\cos(\theta)$ on the *y*-axis.

What do you think the graph of $y = cos(\theta)$ looks like? Sketch your graph to the right.

After you are done, select **Show curve** in the Gizmo. Adjust your sketch as needed.

– 360°	-180°	-1	180°	360°

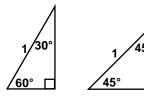
- 3. Angles can be measured in **radians** instead of degrees. A radian is a unit of angle measure, such that one full rotation (360°) equals 2π radians.
 - A. If $360^\circ = 2\pi$, what is the radian measure of a 180° angle?
 - B. A 60° angle is $\frac{1}{3}$ of 180°. What does 60° equal in radians?
 - C. Fill in the radian measure equal to each degree measure below. Check your answers in the Gizmo. (Select **Degrees**, type the degree measure, and select **Radians**.)

Degree measure	0°	30°	45°	60°	90°
Radian measure					

D. State the identity $\cos(\theta) = \cos(\theta \pm (360n)^\circ)$ using radians.

Activity B:	Get the Gizmo ready:	
The cosine function and identities	 On the COSINE tab, be sure Show curve and Show reference triangle are turned on. Select Degrees and Common angles only. 	-1

1. Label the legs of the 30-60-90 and 45-45-90 triangles to the right with their lengths. (Hint: If you don't remember these values, use the Pythagorean Theorem. The short leg of the 30-60-90 triangle is exactly half of the hypotenuse.)



- 2. Start with θ at 0°, and drag the point on the circle counterclockwise from 0° to 180°.
 - A. Fill in the table to the right with the cosine values of 30°, 45°, and 60°.
 - B. What reference triangle (30-60-90 or 45-45-90) would you use for each angle below?

θ	30°	45°	60°
cos(θ)			

30°	45°	60°

C. Fill in the table to the right with the cosine values of 120°, 135°, and 150°.

θ	120°	135°	150°
cos(θ)			

would you use for each angle below?

D. What reference triangle (30-60-90 or 45-45-90)

150°	
------	--

E. For the angles above, what is true about $cos(\theta)$ for the same reference triangle?

3. Turn off **Common angles only**. Set θ to 0°. Drag the point around the circle.

120° 135°

A. In which quadrants is cosine positive? _____ negative? _____

B. Explain why, using the unit circle.

- C. Use what you know about reference triangles and quadrants to find the values.
 - $\cos(225^{\circ}) = _ \ \cos(330^{\circ}) = _ \ \cos(480^{\circ}) = _$

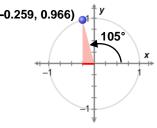
(Activity B continued on next page)

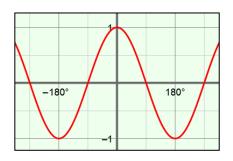
Activity B (continued from previous page)

4.		back to 0°. Drag the point around the circle. Examine pairs of angles whose measures 180°, or π radians (for example, 60° and 120°, or 210° and –30°).
	Α.	What do you notice about their cosine values?
	В.	Two angles have a sum of 180°. If one angle is θ , what expression represents the
		other angle?
	C.	Write two equations to show how the cosine values of angles that add to 180° relate to each other. (Write one equation in degrees, and the other in radians.)
5.	Set θ k	back to 0°. Drag the point around the circle.
	Α.	Examine pairs of opposite angles (for example, 30° and -30°). What is true about
		their cosine values?
	В.	Use what you observed above to write an equation about the cosine values of
		opposite angles.
		This makes cosine an even function , and its graph is symmetric about the <i>y</i> -axis.
	C.	Examine pairs of angles that are 180° apart (for example, 30° and 210°). What is
		true about their cosine values?
	D.	Use what you noticed to write two equations to show how the cosine values of angles that are 180° apart are related. (Write one in degrees, and one in radians.)
	E.	It is also true that $\cos(\theta) = \cos(360^\circ - \theta) = \cos(2\pi - \theta)$. Explain why this makes sense, using the unit circle.

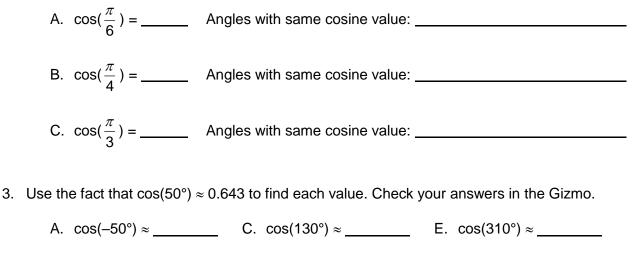
Activity C: Practice with the cosine function	 <u>Get the Gizmo ready</u>: On the COSINE tab, select Degrees. 	
 The angle shown of measure of 105°. 	on the unit circle to the right has a (-0.259, 0.966)	1 105°

- A. What is cos(105°)? _____
- B. The graph of $y = \cos(\theta)$ is shown to the right. Plot and label the point that shows $\cos(105^\circ)$ on this graph. Check in the Gizmo.
- C. Plot three other points on the graph with a y-value (cosine) of -0.259. Write the coordinates of the points below. Check your points in the Gizmo.





- D. Plot four points on the graph with a *y*-value of 0.259. Write the coordinates of the points below. Check your points in the Gizmo.
- 2. Give the cosine value of each angle below. Then list four different angles (two positive and two negative) with the same cosine value. Check your answers in the Gizmo.



B. $\cos(-410^{\circ}) \approx$ _____ D. $\cos(-230^{\circ}) \approx$ _____ F. $\cos(410^{\circ}) \approx$ _____

Extension:	Get the Gizmo ready:	
Cosine and sine	• Select the SINE tab.	

1. The sine of angle θ in a right triangle is the length of the $sin(\theta) = \frac{opposite}{hypotenuse}$ opposite leg divided by the hypotenuse. On the unit circle, $sin(\theta)$ is the *y*-value of the point where θ intersects the circle.

Drag the point counterclockwise. How does the y-coordinate change in one full rotation?

- 2. Set **9** to 0°. Drag the point around the circle. Examine pairs of angles whose measures add to 90°. (Be sure to look at angles with both positive and negative measures.)
 - A. What do you notice about the cosine of one angle and the sine of the other?
 - B. Two angles add to 90°. If one angle is θ , what is the other angle?
 - C. Write two equations to summarize how the cosine and sine values of angles that add to 90° relate to each other.

 $\cos(\theta) = _$ $\sin(\theta) = _$

3. If *a* and *b* are the legs of a right triangle with hypotenuse *c*, then the Pythagorean Theorem states that $a^2 + b^2 = c^2$.

A. Use the Pythagorean Theorem to write an equation for the

reference triangle shown to the right.

- B. Use $\cos(\theta)$ and $\sin(\theta)$ to write the *Pythagorean Identity*.
- 4. Use the Pythagorean Identity to find each value. Show your work, and check in the Gizmo.

A. $\cos(\theta) = \frac{\sqrt{3}}{2}$ $\sin(\theta) =$ _____ B. $\sin(\theta) = 0.391$ $\cos(\theta) \approx$ _____

