

Name:

Date:

Student Exploration: Logarithmic Functions: Translating and Scaling

Vocabulary: asymptote, base, domain, logarithmic function, scale (a function), transform (a function), translate (a function)

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

- 1. The function $y = 3^x$ is an exponential function, because the variable is in the exponent. The value (in this function, the 3) raised to the exponent is called the **base** of the function.
 - A. For $y = 3^x$, what is the output (y) when the input (x) is 2?
 - B. What is y when x is 5?_____
- 2. The inverse of $y = 3^x$ is the **logarithmic function** $y = \log_3(x)$. Recall that the logarithmic form $(y = \log_3(x))$ can always be converted to exponential form $(3^y = x)$ if it helps.
 - A. For $y = \log_3(x)$, what does the *input* (*x*) have to be to get an *output* (*y*) of 2?
 - B. For $y = \log_3(x)$, what is x when y is 5?

Gizmo Warm-up

The general form of a logarithmic function is $y = a \log_b c(x - h) + k$. In the *Logarithmic Functions: Translating and Scaling* Gizmo, you can vary the values of *a*, *c*, *h*, and *k* to see how they alter, or **transform**, the graph of $y = \log_b(x)$.

On the **CONTROLS** tab, be sure *a* is set to 1, *b* to 2, *c* to 1, *h* to 0, and *k* to 0. (To quickly set the value of a slider, type the number into the text box and press **Enter**.) The function graphed in the Gizmo should be $y = \log_2(x)$.

1. Vary **h** by dragging the slider. What happens to the graph?

2. Drag the **k** slider back and forth. How does the graph change as you vary k?

Activity A:	Get the Gizmo ready:	2			
Effects of <i>h</i> and <i>k</i> on the graph	 On the CONTROLS tab, set <i>a</i> to 1, <i>b</i> to 2, <i>c</i> to 1, <i>h</i> to 0, and <i>k</i> to 0. 	2 4 6 8			
1. The function you have graphed in the Gizmo should be $y = \log_2(x)$.					

A. Give the coordinates of two "key points" on the graph of $y = \log_2(x)$ (the points that

have *y*-values of 0 and 1). (____, 0) and (____, 1) Select **Show probe** to check.

- B. Set **k** to 3 to graph the function $y = \log_2(x) + 3$. What are the coordinates of these two
 - key points now? (____, ___) (____, ___)
- C. How did adding 3 to $log_2(x)$ change the coordinates of those points?
- D. How did adding 3 translate (shift) the graph as a whole?
- E. Vary **k** and **b** to see how k affects logarithmic functions with different bases. In general, what two key points are always on the graph of $y = \log_b(x) + k$?
 - (1, ____) and (*b*, ____)
- 2. Graph $y = \log_2(x)$ again in the Gizmo. Then set **h** to 3 to graph the function $y = \log_2(x 3)$.
 - A. Where are the key points (formerly (1, 0) and (2, 1)) now? (___, ___) and (___, ___)
 - B. How did subtracting 3 from x shift the graph of $y = \log_2(x)$?

Explain why this makes sense.

C. Vary **h** and **b** to see how h affects logarithmic functions with different bases. In general, what two key points are always on the graph of $y = \log_b(x - h)$?

(_____, 0) and (_____, 1)

D. In general, how do you know which direction *h* will move a graph?

(Activity A continued on next page)

Activity A (continued from previous page)

3.	Experiment more with	different values of h,	<i>k</i> , and <i>b</i> .	In general, w	hat two key points are
----	----------------------	------------------------	---------------------------	---------------	------------------------

always on the graph of $v = \log_{b}(x - h) + k$?		
	·,/ ·,/	

- 4. Now graph $y = \log_{B}(x)$ in the Gizmo. Turn on **Show asymptote**. The light blue vertical dotted line is the **asymptote**. It marks the edge of the **domain**, which is the set of all *x*-values for which the function is defined.
 - A. How do you think *h* and *k* affect the asymptote and domain of $y = \log_8(x)$? Explain.

	В.	Vary h and k in the	e Gizmo to check your answer	. What do you find?
	C.	Vary b , h , and k to asymptote and do	test many different logarithm main of $y = \log_b(x - h) + k$?	ic functions. In general, what are the
		Asymptote:	Domain:	·
5.	State t answe	he coordinates of tw r in the Gizmo.	vo key points on the graphs of	f the following functions. Check your
	A.	$y = \log_2(x-5)$	B. $y = \log_6(x) + 2$	C. $y = \log_3(x+4) - 6$

6. What logarithmic functions are graphed here? Check your answers in the Gizmo.

A.	4		(4, 0)	(7,	1)	
	-2 -2 -2 -4	2	4	6	8	10

Activity B:	Get the Gizmo ready:	2		
Effects of <i>a</i> and <i>c</i> on the graph	 On the CONTROLS tab, select Show probe and turn off Show asymptote. Set <i>a</i> to 1, <i>b</i> to 8, <i>c</i> to 1, <i>h</i> to 0, and <i>k</i> to 0. 	-2	2 4	6

- 1. The function you have graphed in the Gizmo should be $y = \log_8(x)$.
 - A. What are the coordinates of two "key points" (the points with y-values of 0 and 1) on

this graph? (_____, 0) and (_____, 1) Use the probe to check your answers.

B. Use the slider to vary the value of a. What happens to these two points? ______

C. When a is negative, what happens to the graph?

D. Vary **a** and **b** to check how a affects logarithmic functions with other bases. You should see that the value of a **scales** (stretches or shrinks) the graph vertically.

In general, what two key points are always on the graph of $y = a \log_b(x)$?

(_____, ____) and (_____, ____)

E. Select Show asymptote. Vary a and b. How does a affect the asymptote and

domain?

- 2. Graph the function $y = \log_5(x)$ in the Gizmo.
 - A. What is the solution to $\log_5(x) = 0$? _____ To $\log_5(x) = 1$? _____
 - B. Based on that, what two points lie on the graph of $y = \log_5(x)$?
 - C. What is the solution to $\log_5 2(x) = 0$? _____ To $\log_5 2(x) = 1$? _____
 - D. So, what two points must lie on the graph of $y = \log_5 2(x)$?
 - E. Graph $y = \log_5 2(x)$ in the Gizmo. Use the probe to verify the points you found. Overall, how did the graph of $y = \log_5(x)$ change when *c* changed from 1 to 2?

(Activity B continued on next page)

Activity B (continued from previous page)

3. Vary *c* and *b* to check how *c* affects logarithmic functions with other bases. You should see that *c* scales the graph horizontally.

	What two key points are always on the graph of $y = \log_b c(x)$?	-
4.	Graph $y = \log_2(x)$ in the Gizmo. Turn on Show asymptote .	
	A. How do you think <i>a</i> and <i>c</i> will affect the asymptote and domain of $y = \log_2(x)$?	
		_

Check your answer in the Gizmo.

- B. Vary **a** and **c** in the Gizmo to check your answer. What do you find?
- C. Vary **a**, **b**, and **c**, to see many different logarithmic functions. In general, what are the asymptote and domain of $y = a \log_b c(x)$?
 - Asymptote: _____ Domain:
- 5. State the coordinates of two key points on the graphs of the following functions. Check your answers in the Gizmo.
 - B. $y = \log_6 2(x)$ C. $y = -5 \log_9 2(x)$ A. $y = 6 \log_3(x)$
- 6. What logarithmic functions are graphed here? Check your answers in the Gizmo.

Activity C:	Get the Gizmo ready:	y
Practice scaling and translating functions	 On the CONTROLS tab, turn off Show probe and Show asymptote. 	2 4 6

- 1. Before using the Gizmo, consider the graph shown here.
 - A. How has the function $y = \log_7(x)$ been transformed to create the graph shown?

- B. What is the value of h? _____ Of k? _____
- C. What logarithmic function does the graph show?

Use the Gizmo to check your answers.

2. State the coordinates of two key points on the graphs of the following functions. (Hint: Work from the "inside out.")

A. $y = 7 \log_3(x)$ B. $y = -\log_8(x+2) + 5$ C. $y = \log_4 2(x) - 6$

Graph these functions in the Gizmo to check your answers.

3. What logarithmic functions are graphed here? Check your answers in the Gizmo.

