Name: ____

Date:

Student Exploration: Quadratics in Factored Form

Vocabulary: factored form of a quadratic function, linear factor, parabola, polynomial, quadratic function, root of an equation, vertex of a parabola, *x*-intercept

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

- 1. The sides of the large rectangle to the right measure (x + 2) and (x + 1).
 - A. The rectangle has been divided into four regions. Label each region in the rectangle with its area.
 - B. What is the total area of the large rectangle? ______

This **polynomial** is the product of the two **linear factors**, (x + 2) and (x + 1).

2. The area of another rectangle is $x^2 + 5x + 6$. If one side measures (x + 2), what is the

measure of the other side?

Gizmo Warm-up

A function in which y depends on the square of x is a **quadratic function**. The graph of a quadratic function is a **parabola**, as shown to the right.

A quadratic function can be written in **factored form**: $y = a(x - r_1)(x - r_2)$. You will explore this type of quadratic function in the *Quadratics in Factored Form* Gizmo.

To begin, set **a** to 1. (Change the values of **a**, r_1 , or r_2 by dragging the sliders, or by clicking in the text field, typing in a value, and hitting **Enter**.)

1. Turn on **Show** *x***-intercepts**. Drag the r_1 and r_2 sliders to vary the values. Watch the values of the *x***-intercepts** (the *x*-coordinates where the graph intersects the *x*-axis) as you do.

How are r₁ and r₂ related to the x-intercepts?

2. Set a to 0, and then slowly drag the a slider to the right. What happens as a increases?

3. Set *a* to –1. What is true when *a* is less than zero?

1

Activity A:	Get the Gizmo ready:	-4 -2
The graph of $y = a(x - r_1)(x - r_2)$	 Turn off Show x-intercepts. Turn on Show probe. Set a to 1, r₁ to -3, and r₂ to 2. 	-2 -4 -6

- 1. The function graphed in the Gizmo should be y = (x + 3)(x 2).
 - A. What are the values of r_1 and r_2 for this equation? $r_1 =$ _____ $r_2 =$ _____
 - B. Drag the probe to r_1 and then r_2 . What is the y value at each of these points?
 - C. Evaluate y = (x + 3)(x 2) at $x = r_1$ and then at $x = r_2$. Show your work below.
 - D. Turn on **Show x-intercepts**. What happens when the function is evaluated at its x-intercepts?

The x-intercepts are the **roots**, or solutions, of the related equation (x + 3)(x - 2) = 0.

E. If the product of $(x - r_1)$ and $(x - r_2)$ is zero, what must be true about at least one of these factors? _____

This is the zero product property.

2. With **a** set to 1, vary the values of r_1 and r_2 to graph different functions of the form

 $y = (x - r_1)(x - r_2)$. What is the value of $y = (x - r_1)(x - r_2)$ at r_1 and r_2 ?

- 3. Graph y = 4(x-1)(x+5) in the Gizmo.
 - A. What are the values of r_1 and r_2 for this function? $r_1 =$ ____ $r_2 =$ ____
 - B. Why are r_1 and r_2 roots of the equation 4(x-1)(x+5) = 0?
 - C. Vary **a** to graph different functions of the form y = a(x 1)(x + 5). Does a have any effect on the roots? _____ Explain. _____

(Activity A continued on next page)

Activity A (continued from previous page)

- 4. Set *a* to 1. Vary the values of r_1 and r_2 to find several parabolas with only one *x*-intercept.
 - A. What is the relationship between r_1 and r_2 when the graph has only one x-intercept?
 - B. The vertex of a parabola is the maximum or minimum point of the parabola.
 When there is only one *x*-intercept, how are the vertex of a parabola and its *x*-intercept related?
 C. When *a* = 1, what is the factored form of a quadratic function with its vertex at the
 - origin? _____ Check your answer in the Gizmo.
 - D. While the vertex is on the x-axis, vary a. What happens to the vertex and x-intercept?

Experiment with a variety of functions to check that this is always true.

- E. Set *a* to 1. Vary the values of r_1 and r_2 to view a variety of parabolas with two *x*-intercepts. Where is the vertex located in relationship to the two *x*-intercepts?
- 5. Find the quadratic function in factored form for each parabola described or shown below. Check your answers in the Gizmo by graphing your functions.
 - A. x-intercepts -4 and 0, a = 3
- C. x-intercepts -3 and 3, a = -1

Activity B:	Get the Gizmo ready:	6
Factored form and polynomial form	 Be sure Show x-intercepts and Show probe are turned off. Set a to 1, r₁ to 3, and r₂ to 4. 	4 2 2 4 6

- 1. The function graphed in the Gizmo should be y = (x 3)(x 4).
 - A. You can multiply the right side of $y = a(x r_1)(x r_2)$ to write it in **polynomial form**, $y = ax^2 + bx + c$.

Multiply (x-3)(x-4) to write y = (x-3)(x-4) in polynomial form. Show your work to the right. Then select **Show polynomial form** to check your answer.

- B. How can you combine r_1 and r_2 in the factored form to get b in the polynomial form?
- C. How can you combine r_1 and r_2 to get c?

_ Experiment with other functions to check that this is always true.

- D. Multiply $(x r_1)(x r_2)$ to write $y = (x r_1)(x r_2)$ in polynomial form. Show your work to the right.
- E. How does the "multiplied-out" version of $y = (x r_1)(x r_2)$ show how r_1 and r_2 can be used to find *b* and *c* in the polynomial form?
- 2. With **a** still set to 1, vary the values of r_1 and r_2 to find several parabolas with one x-intercept.
 - A. How can you use the value of r_1 to get the value of c in the polynomial form?
 - B. How can you use the value of r_1 to get the value of b in the polynomial form?
 - C. If *a* = 1, how can you tell if a function written in polynomial form has exactly one *x*-intercept?

(Activity B continued on next page)

Activity B (continued from previous page)

- 3. Be sure **Show polynomial form** is still turned on.
 - A. Use the Gizmo to help you fill in the table for each of the functions in the first column.

Factored form	Polynomial form when <i>a</i> = 1	Polynomial form when <i>a</i> = 2	Polynomial form when <i>a</i> = –3
y = a(x-2)(x-4)			
y = a(x+1)(x-2)			
y = a(x-5)(x+2)			

- B. How does a change the values of b and c in the polynomial form?
- C. Use r_1 , r_2 , and *a* in the blanks below to write equations that describe the relationships you discovered above.
 - b = _____ C = _____
- D. Use the equations from above to fill the blanks below to write equations for the sum and product of the roots of a quadratic function.

 $r_1 + r_2 = _$ $r_1 r_2 = _$

- 4. One *x*-intercept of $y = x^2 6x + c$ is 3.
 - A. How you can find the value of *c*?
 - B. What is the value of c?
 - C. What is true about the x-intercepts of this function?
- 5. One x-intercept of $y = x^2 + bx + 10$ is 5.
 - A. How you can find the value of *b*?
 - B. What is the value of b?

C. What is the other *x*-intercept of this function?