

Name:

Date:

Student Exploration: Reflections

Vocabulary: image, line of reflection, perpendicular bisector, preimage, reflection

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

- Suppose you look at the triangle shown to the right in a mirror. Make a sketch to show what you would see in a mirror represented by the dashed line segment.
 Suppose you look at the word shown to the right in a mirror. Make a sketch to show what you would see in a mirror represented by the dashed line segment.
 Gizmo Warm-up In the *Reflections* Gizmo, you will examine the **reflection** (mirror image) of different figures. You will explore the relationship between the original figure
- 1. Be sure **Point** is selected from the **Figure type** menu, and that **Show reflection** is checked.
 - A. Drag point A upwards. How does point E (the reflection of point A) move?

B. Drag point A downwards toward the line. Where does point E go?

C. Drag point A below the line. What happens to E?

2. The line in the Gizmo is the line of reflection.

(the **preimage**) and the reflected figure (the **image**).

- A. Drag the line upward by the left point to rotate it clockwise. What happens to the distance between point *E* and the line as the line gets closer to point *A*?
- B. Continue to rotate the line clockwise. What happens to point E?

Activity A:	Get the Gizmo ready:	
Reflections of points and segments	 Be sure Point is selected in the Figure type dropdown menu. Be sure Show reflection is checked. 	

1. Recall that point *E* is the reflection (image) of point *A* (the preimage). Select **Show ruler** to open a Gizmo ruler. Attach the ruler's "donuts" to points *A* and *E*. Then drag one of the points on the line of reflection until it is on \overline{AE} as shown to the right.

- A. What is the distance from A to E?
- B. Use the Gizmo ruler to measure the distances from points *A* and *E* to the line of reflection. Record these distances below.

|--|

- C. Compare all of the distances you found above. What do you notice?
- D. Turn off the ruler and select **Show angle measure tool** to open a Gizmo protractor. Attach the "donuts" to measure the angle that \overline{AE} makes with the line of reflection.

What is the measure of the angle that \overline{AE} makes with the line of reflection?

- E. What two words describe the relationship between \overline{AE} and the line of reflection?
- F. Turn off the protractor and select the ruler. Attach the ruler to points *A* and *E*. Drag point *A* and the points on the line of reflection. Watch the diagram as you do to convince yourself that the line of reflection is always the **perpendicular bisector** of \overline{AE} . Make a labeled sketch in the space to the right to illustrate this fact.
- 2. On the diagram to the right, sketch the reflection of point *A* over the segment. Label the image point *E*. Then check your sketch by duplicating it in the Gizmo.

(Activity A continued on next page)

Activity A (continued from previous page)

3.	Select	Segment from the Figure type menu. Check that	Show reflection is turned on.		
	A.	Drag the endpoints of \overline{AB} . Watch \overline{EF} as you do. (reflection) of each of the endpoints of \overline{AB} ?	Which point is the image		
	Image of point A: Image of point B:				
	B.	Compare the lengths of \overline{AB} and \overline{EF} . What appear	ars to be true?		
			Use the Gizmo rulers to check.		
	C.	If point A is closer to the line of reflection than point	nt <i>B</i> , will point <i>E</i> or <i>F</i> be closer to		
		the line of reflection? Why?			
			Check your answer in the Gizmo.		
	D.	will be true about \overline{EF} and the line			
of reflection?					
		Why?			
			Check your answer in the Gizmo.		
	E.	Two segments that are not shown in the Gizmo are formed by the corresponding endpoints of \overline{AB} and \overline{EF} . The line of reflection is the perpendicular bisector of these two segments. Make a labeled sketch of this in the space to the right, using dashed lines for the segments not shown in the Gizmo.			
	F.	Name the segments that are not shown in the Giz	mo		
4.	On the reflecti the ima duplica	e diagram to the right, sketch the fon of \overline{AB} over the segment. Label age \overline{EF} . Then check your sketch by ating it in the Gizmo.	Ø		

Activity B: Reflections of	Get the Gizmo ready:	8 8
triangles and quadrilaterals	 Be sure Show reflection is turned on. Select Triangle from the Figure type menu. 	E F G

- 1. With **Triangle** selected and **Show reflection** turned on, drag the vertices of $\triangle ABC$ (the preimage) around. Watch the vertices of $\triangle DEF$ (the image) as you do.
 - A. List the corresponding vertices of $\triangle ABC$ and $\triangle DEF$.

		and	and	and
	В.	Does $\triangle ABC$ appear to be	congruent to Δ <i>DEF</i> ?	_ Use the Gizmo protractors
		and rulers to check your a	nswer.	
	C.	State whether ΔEFG is ori appears to be "backwards" a sketch in the space to th	ented the same as, or " from, <i>ΔABC</i> . Then make e right to show this.	
	D.	ion, where will one of the		
		vertices of <i>ΔEFG</i> lie?		Why?
			Che	ck your answer in the Gizmo.
	E.	Suppose the line of reflect	ion passes through $\triangle ABC$. V	Will the line of reflection also
		pass through ΔEFG ?	Explain	
			Che	ck your answer in the Gizmo.
	F.	The line of reflection is the corresponding vertices of a not shown in the Gizmo.)	perpendicular bisector of so ΔABC and ΔEFG . Name the	egments formed by the e segments. (The segments are
				/
2.	On the reflecti Label t sketch	diagram to the right, sketc on of ΔABC over the segment the image ΔEFG . Then che by duplicating it in the Gizr	h the ent. ck your no.	B

Activity B (continued from previous page)

- 3. Select **Quadrilateral** from the **Figure type** dropdown menu. Be sure **Show reflection** is turned on. Drag the vertices of *ABCD* around. Watch the vertices of *EFGH* as you do.
 - A. List the corresponding vertices of *ABCD* and *EFGH*.

_____ and _____ and _____ and _____ and _____

(A)_

B. Earlier in this activity, you learned that a triangle and its reflection are congruent. Is

the same thing true about quadrilaterals? _____ Check in the Gizmo.

C. You also learned that the reflection of a triangle is "backwards" from the triangle. Is

this also true about the reflection of a quadrilateral?

- D. On the diagram to the right, sketch the reflection of quadrilateral *ABCD* over the segment. Label the image *EFGH*. Then check your sketch by duplicating it in the Gizmo.
- 4. Answer each of the following questions about reflections. Then use the Gizmo to check your answers.

Λ.	1.6	11	l'and a f			-I	· · · · · · · ·		1 0	
Δ	IT	ON THA		ratiantinn	wnoro	aude ite	Imana	H		
л.				TORCOUDIN	WIICIC		innage		110:	
				,						

_____ Why?_____

B. Triangle *EFG* is a reflection of triangle *ABC*. If the line of reflection bisects one side

of $\triangle ABC$, will it also bisect a side of $\triangle EFG$? ______ Make a sketch in the space

below to show that your answer is correct.