

Name:

Date:

Student Exploration: Tangent Function

 $tan(\theta) =$

Vocabulary: asymptote, odd function, period, radian, reference triangle, tangent, trigonometric function, unit circle

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

opposite 1. The **tangent** of angle θ of a right triangle is the length $tan(\theta) =$ of the opposite leg divided by the adjacent leg.

The legs of the right triangle to the right have lengths of 3 units and 4 units, and the hypotenuse is 5 units.

What is the tangent of angle θ ?

2. A right triangle is placed in a circle whose center is at the origin of a coordinate plane, as shown to the right.

What is $tan(\theta)$?	tan(θ) =	

The tangent function $y = \tan(\theta)$ is a **trigonometric function**. When θ is in standard position, as shown to the right, $tan(\theta)$ is the ratio of the y-value of the point where θ intersects the circle to the x-value. So,

 $tan(\theta) = \frac{y}{x}$. In the Tangent Function Gizmo, you will explore the

tangent function and its graph.

1. Turn on Show reference triangle. With Degrees selected, drag the blue point on the circle from 0° counterclockwise to 90°.

What is true about the x- and y-coordinates of all points in quadrant I?

- 2. Now, drag the slider from 0° to the right to 90°. Watch the value of $tan(\theta)$ as you do.
 - A. What is the sign of $tan(\theta)$? _____
 - B. Explain why this makes sense, based on the unit circle.

	Get the Gizmo ready:	, <u>†</u> y
Activity A: The basics of tangent	 Be sure Degrees and Show reference triangle are selected. Set <i>θ</i> to 0°. (To quickly set <i>θ</i> to a specific value, type the value in the text box, and hit Enter.) 	x

The circle shown in the Gizmo has a radius of 1, so it is a **unit circle**. Angle θ is formed by the radius of the circle and the positive *x*-axis. The tangent of θ is the ratio of the *y*-value $(\sin(\theta))$ of the point on the unit circle to the *x*-value $(\cos(\theta))$.

So,
$$\tan(\theta) = \frac{y}{x} = \frac{\sin(\theta)}{\cos(\theta)}$$
.

The right triangle formed by the perpendicular segment from the terminal ray of θ to the *x*-axis is called the **reference** triangle for angle θ .

- 1. Think about dragging the point around the circle, from 0° to 360°, in a counterclockwise direction.
 - A. For what angles θ do you think tan(θ) will have these key values? (Predict first, then check.)

 $tan(\theta) = 0$ when $\theta =$ _____

 $tan(\theta)$ is undefined when $\theta =$

 $(\cos(\theta), \sin(\theta))$

 $\tan(\theta) = 1$ when $\theta =$ _____ $\tan(\theta) = -1$ when $\theta =$ _____

 $tan(\theta)$ is positive in quadrants ______ and negative in quadrants ______

Drag the point around the circle to check your predictions.

- B. Explain why $tan(\theta) = 0$ where it does, based on the unit circle.
- C. Explain why $tan(\theta) = 1$ where it does, based on the unit circle.
- D. Drag the point around the circle a few times. How often do the $tan(\theta)$ values repeat?

You should have found that $tan(\theta)$ repeats every 180°. This interval is the **period** of the tangent function. A function that repeats in regular intervals like this is *periodic*.

(Activity A continued on next page)

Activity A (continued from previous page)

- 2. Set θ to 45°. Notice that tan(45°) = 1. Recall that tan(θ) repeats every 180°.
 - A. How can you find other angles θ with $\tan(\theta) = 1?$
 - B. In the Gizmo, check that this is also true for angles other than 45°. Then fill in the

blank to generalize this relationship. $tan(\theta) = tan(\theta \pm (\underline{n})^{\circ})$

- 3. In this question, you will piece together your findings to sketch the graph of $y = \tan(\theta)$. In your graph, be sure that θ is on the *x*-axis and $\tan(\theta)$ is on the *y*-axis.
 - A. At every θ where tan(θ) is undefined, the graph has a vertical dashed line called an **asymptote**. Sketch the asymptotes on the grid to the right.
 - B. Plot the points where $tan(\theta) = 0$.
 - C. Then plot points where $tan(\theta) = 1$ or -1.
 - D. What do you think happens to $tan(\theta)$ when θ is near the asymptotes? Explain why, based on the unit circle.

- E. What do you think the rest of the graph of $y = tan(\theta)$ looks like? Sketch it above. After you are done, select **Show curve** in the Gizmo. Adjust your sketch as needed.
- 4. Angles can be measured in **radians** instead of degrees. A radian is a unit of angle measure, such that one full rotation (360°) equals 2π radians.
 - A. If $360^\circ = 2\pi$, what is the radian measure of a 180° angle?
 - B. A 30° angle is one-sixth of 180°. What does 30° equal in radians?
 - C. Fill in the table with the radian measure for each degree measure. Check in the Gizmo by setting the degree measure and then selecting **Radians**.

Degree measure	0°	30°	45°	60°	90°
Radian measure					

Activity B:	Get the Gizmo ready:	
The tangent function and identities	 Be sure Show curve and Show reference triangle are turned on. Select Degrees and Common angles only. 	1/10°

1. Label the legs of the 30-60-90 and 45-45-90 triangles to the right with their lengths. (Hint: If you don't remember these values, use the Pythagorean Theorem. The short leg of the 30-60-90 triangle is exactly half of the hypotenuse.)

- 2. Start with θ at 0°, and drag the point on the circle counterclockwise from 0° to 180°.
 - A. Fill in the table to the right with the tangent values of 30°, 45°, and 60°.
 - B. What reference triangle (30-60-90 or 45-45-90) would you use for each angle below?

	θ	30°	45°	60°
ta	n(<i>θ</i>)			

30°	45°	60°
		_

C. Fill in the table to the right with the tangent values of 120°, 135°, and 150°.

θ	120°	135°	150°
tan(<i>θ</i>)			

D. What reference triangle (30-60-90 or 45-45-90) would you use for each angle below?

120° 135° 150°

- E. For the angles above, what is true about $tan(\theta)$ for the same reference triangle?
- 3. Turn off **Common angles only**. Set *θ* to 0°. Drag the point around the circle.

A. In which quadrants is tangent positive? _____ negative? _____

B. Explain why, using the unit circle.

- C. Use what you know about reference triangles and guadrants to find the values.
 - $\tan(210^\circ) = _$ $\tan(315^\circ) = _$ $\tan(480^\circ) =$

(Activity B continued on next page)

Activity B (continued from previous page)

4.		back to 0°. Drag the point around the circle. Examine pairs of angles whose measures o 180°, or π radians (for example, 60° and 120°, or 210° and –30°).		
	A.	What do you notice about their tangent values?		
	B.	Suppose two angles have measures that add to 180°. One angle is called θ . What expression represents the other angle?		
	C.	Fill in the blanks below to show how the tangent values of angles that add to 180° relate to each other. (Write it once in degrees, and once in radians.)		
		$\tan(\theta) = $ $\tan(\theta) = $		
5.		back to 0°. Drag the point around the circle. Examine pairs of angles whose measures 360°, or 2π radians (for example, 160° and 200°, or 380° and –20°).		
	Α.	What do you notice about their tangent values?		
	В.	Suppose two angles have measures that add to 360°. One angle is called θ . What		
		expression represents the other angle?		
	C.	Fill in the blanks below to show how the tangent values of angles that add to 360° relate to each other. (Write it once in degrees, and once in radians.)		
		$\tan(\theta) = _$ $\tan(\theta) = _$		
6.	Set θ I	back to 0°. Drag the point around the circle.		
	Α.	Examine pairs of opposite angles (for example, 30° and -30°). What is true about		
		their tangent values?		
	В.	Use what you noticed above to write an equation about the tangent values of		
		opposite angles.		
		This makes tangent an odd function , and its graph is symmetric about the origin.		

Pr		C: with the function	<u>Get the Gizmo ready</u> : • Select Degrees .	
1.		C C	at has a very large, positive tangent value arge and positive?	
				heck your answer in the Gizmo.
2.		What is tar	rcle to the right measures 130°. (130°), as a fraction and as a decimal? culator, and round to 2 decimal places.)	(-0.643, 0.766) 130° x -1
	B.	and label th	of $y = tan(\theta)$ is shown to the right. Plot the point that shows tan(130°) on this teck in the Gizmo.	
	C.	(tangent) o	r points on the graph with a <i>y</i> -value f –1.19. Write the coordinates below. < in the Gizmo.	- 1¢0° 1¢0°
	D.		ts on the graph with a <i>y</i> -value of 1.19. oordinates below. Check in the Gizmo.	
3.			alue of each angle below. Then list four of the same tangent value. Check your ans	
	A.	$\tan(\frac{\pi}{6}) = $	Angles with same tangent value	9:

- B. $tan(\frac{\pi}{4}) =$ _____ Angles with same tangent value: _____
- C. $tan(\frac{\pi}{3}) =$ _____ Angles with same tangent value: _____